Exercise set K#

Please, see the general comment on the tutorial exercises

Question K.1#

Consider an unconstrained optimization problem

\[ V(\theta) = \max_{x} f(x,\theta) \]

where:

  • \(f(x,\theta) \colon \mathbb{R}^N \times \mathbb{R}^K \to \mathbb{R}\) is an objective function

  • \(x \in \mathbb{R}^N\) are decision/choice variables

  • \(\theta \in \mathbb{R}^K\) are parameters

  • \(V(\theta) \colon \mathbb{R}^K \to \mathbb{R}\) is a value function

Prove the following statement

Statement

Let \(f(x,\theta) \colon \mathbb{R}^N \times \mathbb{R}^K \to \mathbb{R}\) be a differentiable function, and \(x^\star(\theta)\) be the maximizer of \(f(x,\theta)\) for every \(\theta\). Suppose that \(x^\star(\theta)\) is differentiable function itself. Then the value function of the problem \(V(\theta) = f\big(x^\star(\theta),\theta)\) is differentiable w.r.t. \(\theta\) and

\[ \frac{\partial V}{\partial \theta_j} = \frac{\partial f}{\partial \theta_j} \big(x^\star(\theta),\theta\big), \forall j \]

Hint

Total derivative + first order conditions

Question K.2#

Consider an equality constrained optimization problem

\[\begin{split} V(\theta) = \max_{x} f(x,\theta) \\ \text {subject to} \\ g_i(x,\theta) = 0, \; i\in\{1,\dots,I\}\\ \end{split}\]

where:

  • \(f(x,\theta) \colon \mathbb{R}^N \times \mathbb{R}^K \to \mathbb{R}\) is an objective function

  • \(x \in \mathbb{R}^N\) are decision/choice variables

  • \(\theta \in \mathbb{R}^K\) are parameters

  • \(g_i(x,\theta) = 0, \; i\in\{1,\dots,I\}\) where \(g_i \colon \mathbb{R}^N \times \mathbb{R}^K \to \mathbb{R}\), are equality constraints

  • \(V(\theta) \colon \mathbb{R}^K \to \mathbb{R}\) is a value function

Prove the following statement

Statement

Assume that the maximizer correspondence in the problem above is single-valued and can be represented by the function \(x^\star(\theta) \colon \mathbb{R}^K \to \mathbb{R}^N\), with the corresponding Lagrange multipliers \(\lambda^\star(\theta) \colon \mathbb{R}^K \to \mathbb{R}^K\).

Assume that both \(x^\star(\theta)\) and \(\lambda^\star(\theta)\) are differentiable, and that the constraint qualification assumption holds. Then

\[ \frac{\partial V}{\partial \theta_j} = \frac{\partial \mathcal{L}}{\partial \theta_j} \big(x^\star(\theta),\lambda^\star(\theta),\theta\big), \forall j \]

where \(\mathcal{L}(x,\lambda,\theta)\) is the Lagrangian of the problem.

Question K.3#

Roy’s identity

Consider the choice problem of a consumer endowed with strictly concave and differentiable utility function \(u \colon \mathbb{R}^N_{++} \to \mathbb{R}\) where \(\mathbb{R}^N_{++}\) denotes the set of vector in \(\mathbb{R}^N\) with strictly positive elements.

The budget constraint is given by \({\bf p}\cdot{\bf x} \le m\) where \({\bf p} \in \mathbb{R}^N_{++}\) are prices and \(m>0\) is income.

Then the demand function \(x^\star({\bf p},m)\) and the indirect utility function (value function of the problem) satisfy the equations

\[ x_i^\star({\bf p},m) = -\frac{\partial v}{\partial p_i}({\bf p},m) \Big/ \frac{\partial v}{\partial m}({\bf p},m), \; \forall i \in \{1,\dots,N\} \]
  1. Prove the statement

  2. Verify the statement by direct calculation (i.e. by expressing the indirect utility and plugging its partials into the identity) using the following specification of utility

\[ u({\bf x}) = \prod_{i=1}^N x_i^{\alpha_i}, \; \alpha_i > 0 \]

Hint

Envelope theorem should be useful