🔬 Tutorial problems zeta#

\(\zeta\).1#

Consider the matrix \(A\) defined by

\[\begin{split} % A = \begin{pmatrix} 1 & 0 \\ 0.5 & -2 \\ 0 & 3 \end{pmatrix} % \end{split}\]
  • Do the columns of this matrix form a basis of \(\mathbb{R}^3\)? Why or why not?

\(\zeta\).2#

Is \(\mathbb{R}^2\) a linear subspace of \(\mathbb{R}^3\)? Why or why not?

\(\zeta\).3#

Show that if \(T \colon \mathbb{R}^K \to \mathbb{R}^N\) is a linear function then \({\bf 0} \in \mathrm{kernel}(T)\).

\(\zeta\).4#

Let \(S\) be any nonempty subset of \(\mathbb{R}^N\) with the following two properties:

  • \({\bf x}, {\bf y} \in S \implies {\bf x} + {\bf y} \in S\)

  • \(c \in \mathbb{R}\) and \({\bf x} \in S \implies c{\bf x} \in S\)

Is \(S\) a linear subspace of \(\mathbb{R}^N\)?

\(\zeta\).5#

If \(S\) is a linear subspace of \(\mathbb{R}^N\) then any linear combination of \(K\) elements of \(S\) is also in \(S\). Show this for the case \(K = 3\).

\(\zeta\).6#

Let \(\{{\bf x}_1, {\bf x}_2\}\) be a linearly independent set in \(\mathbb{R}^2\) and let \(\gamma\) be a nonzero scalar. Is it true that \(\{\gamma {\bf x}_1, \gamma {\bf x}_2\}\) is also linearly independent?

\(\zeta\).7#

Is

\[\begin{split} z= \begin{pmatrix} -3.98 \\ 11.73 \\ -4.32 \end{pmatrix} \end{split}\]

in the span of \(X:=\{{\bf x}_1, {\bf x}_2, {\bf x}_3\}\), where

\[\begin{split} {\bf x}_1= \begin{pmatrix} -4 \\ 0 \\ 0 \end{pmatrix}, \;\; {\bf x}_2= \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \;\; {\bf x}_3= \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}? \end{split}\]

\(\zeta\).8#

What is the rank of the \(N \times N\) identity matrix \({\bf I}\)?

What about the upper-triangular matrix which diagonal elements are 1?

\(\zeta\).9#

Show that if \(T: \mathbb{R}^N \to \mathbb{R}^N\) is nonsingular, i.e. linear bijection, the inverse map \(T^{-1}\) is also linear.