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Plan for today

1 (very) brief introduction to numerical methods for optimization

2 how to practical implement these methods

Useful online resources if you want to know more

Convex optimization, Stephen Boyd and Lieven Vandenberghe

Youtube channel, Michel Bielaire

Foundations of Computational Economics, Fedor Iskhakov

QuantEcon, John Stachurski and Thomas Sargent

NumEconCPH, Jeppe Druedahl, Asker Christensen, and Christian Carstensen

Note on optimization, Anders Munk-Nielsen
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https://web.stanford.edu/~boyd/cvxbook/
https://www.youtube.com/@MichelBierlaire/playlists
https://fedor.iskh.me/compecon
https://quantecon.org/
https://sites.google.com/view/numeconcph-introprog/home
https://www.dropbox.com/s/wjj5cvi3iz6pzs2/noteOptimization.pdf?dl=0
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Unconstrained optimization

Unconstrained optimization

min
x∈A

f(x)

Recall, that we can transform any maximization problem into a minimization
problem.
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Example I

Consider the simple quadratic optimization problem

min
x∈R

ax+ 1
2b(x− c)2

FOC : f ′(x) = a+ b(x− c) = 0⇔ x∗ = c− a/b

SOC : f ′′(x) = b > 0

As the FOC is linear in x, this optimization problem has a closed form solution
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Example II

Now consider this exponential optimization problem

min
x∈R

ex − 2e−2x + e−3x

FOC : f ′(x) = ex + 4e−2x − 3e−3x = 0

SOC : f ′′(x) = ex − 8e−2x + 9e−3x > 0

As the FOC is none-linear in x, this optimization problem has no closed form
solution
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Aim for the first half of the lecture

Introduce you to numerical methods used to solve optimization problems

Two classes of optimizers:

1 Gradient based (our focus)

2 None-gradient based

Gradient based optimizers include (not conclusive):

Newton’s method

BFGS

BHHH

Gradient descent
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Newton’s method

Case: we cannot solve the optimization problem analytically.

min
x∈Rk

f(x)

Idea: A second order polynomial has a closed form solution. So, let’s
approximate f(x) by a 2nd order Taylor polynomial in the point x0

min
x∈Rk

f(x0) + (x− x0)
T∇f(x0) +

1
2 (x− x0)

T∇2f(x0)(x− x0)

FOC: ∇f(x0) +∇2f(x0)(x− x0) = 0 ⇔ x∗ = x0 − [∇2f(x0)]
−1∇f(x0)

SOC: [∇2f(x0)]
−1 ≥ 0
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Example I: Consider the minimization problem without closed-form solution

f(x) = ex − 2e−2x + e−3x

f ′(x) = ex + 4e−2x − 3e−3x

f ′′(x) = ex − 8e−2x + 9e−3x
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Example I: Approximate the function by the 2nd order Taylor approximation
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Example I: Find the minimum of the 2nd order Taylor approximation
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Example I: Repeat
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Example I: Repeat, repeat
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Example I: Repeat, repeat, repeat

Esben Scriver Andersen (ANU) October 4, 2023 13



Example I: Repeat, repeat, repeat, ...
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Newton’s method

The simplest implementation of Newton’s method starts from an initial guess, x0,
and then iterative update the solution of the FOC

xk+1 = xk − [∇2f(xk)]
−1∇f(xk),

until the norm of the gradient is sufficiently close to zero, ∥∇f(xk)∥ < ε.
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Simple implementation of the Newton’s method

Let’s take a closer look at how this works
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https://colab.research.google.com/drive/1lgpvn0YdzU58n_fBsJIsh_wnV_pllbSg?usp=sharing
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Newton’s method

Newton’s method will converge with certainty if the following technical conditions
are met

1 f is strongly convex with Lipschitz Hessian

2 x0 is close to the solution, x∗

More practically

if the function can be closely approximated by a 2nd order Taylor
approximation Newton’s method converge very fast

Newton’s method will use fewer iterations if a good guess, x0, is provided
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Line search

For not well behaved objective functions, f , the performance of Newton’s method
can be improved through line search.

Let ∆x denotes the newton step

∆x ≡ −[∇2f(x0)]
−1∇f(x0).

Line search is an algorithm that tries to find a good step length, t∆x,

xk+1 = xk + t∆x.

Exact line search for the optimal t

min
t∈R+

f(xk + t∆x).

Inexact line search just tries to find an adequately t
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Backtracking line search

Backtracking line search is a very simple inexact line search algorithm based on
the Armijo–Goldstein condition

f(xk + t∆x) < f(xk) + αt∇f(xk)
T∆x.

If the condition is satisfied the improvement is considered adequate

If the condition is not met then reduce t proportionally by β, t = βt

Best practice is to set α between 0.01 and 0.30

Best practice is to set β between 0.10 and 0.80

Esben Scriver Andersen (ANU) October 4, 2023 19



Backtracking line search

Backtracking line search is a very simple inexact line search algorithm based on
the Armijo–Goldstein condition

f(xk + t∆x) < f(xk) + αt∇f(xk)
T∆x.

If the condition is satisfied the improvement is considered adequate

If the condition is not met then reduce t proportionally by β, t = βt

Best practice is to set α between 0.01 and 0.30

Best practice is to set β between 0.10 and 0.80

Esben Scriver Andersen (ANU) October 4, 2023 19



Backtracking line search

Backtracking line search is a very simple inexact line search algorithm based on
the Armijo–Goldstein condition

f(xk + t∆x) < f(xk) + αt∇f(xk)
T∆x.

If the condition is satisfied the improvement is considered adequate

If the condition is not met then reduce t proportionally by β, t = βt

Best practice is to set α between 0.01 and 0.30

Best practice is to set β between 0.10 and 0.80

Esben Scriver Andersen (ANU) October 4, 2023 19



Backtracking line search

Backtracking line search is a very simple inexact line search algorithm based on
the Armijo–Goldstein condition

f(xk + t∆x) < f(xk) + αt∇f(xk)
T∆x.

If the condition is satisfied the improvement is considered adequate

If the condition is not met then reduce t proportionally by β, t = βt

Best practice is to set α between 0.01 and 0.30

Best practice is to set β between 0.10 and 0.80

Esben Scriver Andersen (ANU) October 4, 2023 19



Backtracking line search

Backtracking line search is a very simple inexact line search algorithm based on
the Armijo–Goldstein condition

f(xk + t∆x) < f(xk) + αt∇f(xk)
T∆x.

If the condition is satisfied the improvement is considered adequate

If the condition is not met then reduce t proportionally by β, t = βt

Best practice is to set α between 0.01 and 0.30

Best practice is to set β between 0.10 and 0.80

Esben Scriver Andersen (ANU) October 4, 2023 19



Backtracking line search with α = 0
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Backtracking line search with α < 1
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Implementation of Newton’s method with backtracking
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Small exercise

Follow the link to Google Colab and do this small exercise:

1 fill out the missing lines in order to calculate the quadratic function, and its
first and second derivative

2 choose an initial guess and use Newton’s method to minimize the quadratic
function

3 what do you find?

4 does your result change if you change the initial guess or the quadratic
function?
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Calculating the gradient and hessian

Three ways to obtain the gradient, ∇f(x):

analytical differentiation

numerical differentiation

∂f(x)
∂x ≈ f(x+ h)− f(x− h)

2h

automatic differentiation (e.g. JAX, Pytorch, or Tensorflow)

As the hessian, ∇2f(x), is the second derivative we can also use numerical and
automatic differentiation to calculate the hessian by simply applying the method
twice.
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BFGS

For Newton’s method we need to calculate the hessian (computational costly)

BFGS (Broyden–Fletcher–Goldfarb–Shanno) iteratively approximate the
Hessian just from gradients

Hk+1 = Hk +
yyT

yT s
− Hkss

THT
k

sTHks
,

y ≡ ∇f(xk+1)−∇f(xk),

s ≡ xk+1 − xk

where H0 typically is set to the identity matrix, H0 = I
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Example II: Random utility model

Let’s consider the random utility model, where the agent i has to choose between
two alternatives, di ∈ (0, 1)

max
di∈(0,1)

vi(di) + εi(di),

where the payoffs, vi(di), are given as

vi(di = 0) = 0,

vi(di = 1) = xiβ.

If the taste-shocks are extreme value type-I distributed the choice probability of
choosing alternative 1 is given by a closed form solution

Pr(di = 1|xi) =
evi(di=1)

1 + evi(di=1)
.
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Example II: Estimation by maximum likelihood

Let’s assume we have a data set with observations on N individuals’

1 characteristics, xi

2 choices, di

We can then estimate β by maximum likelihood estimation (MLE)

β̂ = argmax
β∈Rk

N∏
i=1

Pr(di = 1|xi)
di(1− Pr(di = 1|xi)

1−di).

Taking the logarithm (monotone transformation) of the likelihood function
preserves the solution of the maximization problem

β̂ = argmax
β∈Rk

N∑
i=1

di logPr(di = 1|xi) + (1− di) log(1− Pr(di = 1|xi)).
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Example II: Implementation in JAX

We will use the python package JAX to solve this optimization problem.

JAX allows for

1 hardware acceleration

2 just-in-time computation

3 automatic differentiation

The JAX’s minimizer uses the BFGS algorithm.

Let’s look at how we can estimate the parameters of this model using JAX
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Example III: Two-sided matching model

Consider a matching market that consist of X worker types and Y firm types. It
is assumed that there exists a continum of each type, and the marginal
distribution of worker and firm types are denoted by nx and ny, respectively.
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Example III: Workers’ problem

Each worker of type x face the discrete choice of working for one of the Y types
of firms or become unemployed

max
y

ũxy + ϵxy,

the deterministic utility term, ũxy, is defined as

ũxy = uxy + wxy, for y = 1, ..., Y,

ũx0 = 0.
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Example III: Firms’ problem

Each firm of type y face the discrete choice of hirering one of the X types of
workers or not hire anyone

max
x

ṽxy + ηxy,

the deterministic productivity term, ṽxy, is defined as

ṽxy = vxy − wxy, for x = 1, ..., X,

ṽ0y = 0.
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Example III: Market clearing

If the taste-shocks (ϵxy, ηxy) are assumed iid type-I extreme value distributed the
choice probabilities of the workers and firms (pxy, qxy) are given by the logit
choice probabilities

pxy =
exp(uxy + wxy)

1 +
∑Y

y=1 exp(uxy + wxy)
, ∀(x, y),

qxy =
exp(vxy − wxy)

1 +
∑X

x=1 exp(vxy − wxy)
, ∀(x, y).

The wages, wxy, are determined by a set of market clearing conditions, such that
excess demand is zero, zxy = 0

zxy(W ) ≡ qxy · ny − pxy · nx = 0, ∀(x, y).
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Example III: Newton’s method for solving systems of equations

We can use Newton’s method to set excess demand to zero. The idea is now to
approximate Z(W ) ≡ (z11, ..., z1Y , ..., zX1, ..., zXY )

T by a 1st order Taylor
approximation in the point W0

Z(W ) ≈ Z(W0) +∇Z(W0)(W −W0).

As this a system of linear equation it has a closed form solution

Z(W0) +∇Z(W0)(W −W0) = 0 ⇔ W ∗ = W0 − [∇Z(W0)]
−1Z(W0).
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Example III: Excess demand for labor in initial guess, Z(W0)
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Example III: Excess demand for labor after first Newton step, Z(W1)
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Example III: Excess demand for labor after second Newton step, Z(W2)
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Example III: Implementation in JAX

JAX has not implemented Netwon’s method for solving systems of none-linear
equations. Hence, we will use the package Scipy to solve this matching model.

However, we can still use JAX for

1 evaluating excess demand, Z(W )

2 calculating the gradient, ∇Z(W )

Let’s look at how we can solve this model using JAX and Scipy

Esben Scriver Andersen (ANU) October 4, 2023 37

https://colab.research.google.com/drive/1Hy4B7yh85sRFKBiIgY3s3jmC02aI3MAy?usp=sharing


Example III: Implementation in JAX

JAX has not implemented Netwon’s method for solving systems of none-linear
equations. Hence, we will use the package Scipy to solve this matching model.

However, we can still use JAX for

1 evaluating excess demand, Z(W )

2 calculating the gradient, ∇Z(W )

Let’s look at how we can solve this model using JAX and Scipy

Esben Scriver Andersen (ANU) October 4, 2023 37

https://colab.research.google.com/drive/1Hy4B7yh85sRFKBiIgY3s3jmC02aI3MAy?usp=sharing


Example III: Implementation in JAX

JAX has not implemented Netwon’s method for solving systems of none-linear
equations. Hence, we will use the package Scipy to solve this matching model.

However, we can still use JAX for

1 evaluating excess demand, Z(W )

2 calculating the gradient, ∇Z(W )

Let’s look at how we can solve this model using JAX and Scipy

Esben Scriver Andersen (ANU) October 4, 2023 37

https://colab.research.google.com/drive/1Hy4B7yh85sRFKBiIgY3s3jmC02aI3MAy?usp=sharing


Thank you for today :)

Esben Scriver Andersen (ANU) October 4, 2023 38


