
Assignment-3 

ANU, ECON2125/6012, Semester-1 2023 

Dr Reza Hajargasht 

Question-1 Consider the following problems                                                    (18 marks) 

               (a)     2 2 2 2 2 2
,  subject to 2 6  with 0x ymax x y r x y s r s+  +      

               (b)     2 2 2 2 2 2
,min  subject to 2 6  with 0x y x y r x y s r s+  +     

(i) Solve problem (a) 
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(ii) Solve problem (b) 

This problem can be rewritten as 

* 2 2 2 2 2 2
,  subject to 2 6  with 0x yf max x y r x y s r s= − − −  +     

         Lagrangian 
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(iii) How much does the optimal value of the function change if s changes by .1 

unit in problem (a). How much does the optimal value of the function 

change if r changes by .1 unit in problem (a).  

We use envelope theorem to answer this question 
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(iv) Check the second order condition for problem (b). 
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(v) What are the geometric interpretations of (a) and (b)? 

The admissible set is the area between two ellipses and the problem (a) and (b) are equivalent 

to finding the largest and smallest distance from the origin to a point in this admissible set. 

Question-2 Find the solution to                                                                          (10 marks) 
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So to solve this problem, we first need to solve  *
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This is obviously positive definite Function is Convex   

Question-3                                                                                                              (10 marks) 

 Suppose a consumer has a wealth of W. There is a probability p of a loss of L if an 

adverse event happens. The consumer can buy insurance that will pay him Q in case 

that the loss happens. The consumer has to pay   per dollar insured as the premium. 

The consumer’s problem can be formulated as                                                 

                                              max ( ) (1 ) ( )Q QpU W L Q p U W Q − − + − −+   

i) Find the first order condition. 
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Question-4                                                                                                              (12 marks) 

An investor must choose a portfolio 1( ,...., )T
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1. For the problem of  
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    find the first order conditions and show the solution yields an efficient portfolio. 
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Suppose *x  is not efficient then there should be another **x that obtains a higher return with a 

variance less than or equal to 0V  but this contradicts *x being the point of maximum subject to 

V( ) .Vx  

2. For the problem of  
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     find the first order conditions and show the solution yields an efficient portfolio. 
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Suppose *x is not efficient then there should be another **x  that obtains a lower risk with a a 

return more than or equal to 0  but this contradicts *x being the point of minimum subject to  

0M( ) Mx . 

 

  

 


