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Simultaneous move leapfrogging: 164,295,079 equilibria

Iskhakov, Rust and Schjerning (2016) Review of Economic Studies
“Recursive Lexicographical Search: Finding All Markov Perfect Equilibria
of Finite State Directional Dynamic Games”
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Estimation of stochastic dynamic games

1. Several decision makers (players)
2. Maximize discounted expected lifetime utility
3. Anticipate consequences of their current actions
4. Anticipate actions by other players in current and future periods

(strategic interaction)
5. Operate in a stochastic environment (state of the game) whose

evolution depend on the collective actions of the players

▶ Estimate structural parameters of these models
▶ Data on M independent markets over T periods
▶ Multiplicity of equilibria
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Markov Perfect Equilibria

▶ Discrete-time infinite-horizon dynamic stochastic games with
discrete states and actions

▶ MPE is a pair of strategy profiles and value functions such that

V = ΨV (V ,P, θ) (Bellman equations)
P = ΨP(V ,P, θ) (CCPs = mutual best responces)

▶ Ψ =
(
ΨV ,ΨP

)
gives the structure of the model

▶ Denote the set of all equilibria in the model as

E(Ψ, θ) =

{
(P,V )

∣∣∣∣ V = ΨV (V ,P, θ)
P = ΨP(V ,P, θ)

}

▶ Vision: Solve for all MPE equilibria for any θ
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Maximum Likelihood Estimation

▶ Data from M independent markets from T periods

Z =
{
āmt , x̄mt

}
m∈M,t∈T

▶ Assume that only one equilibrium is played in the data
(we relax this assumption later → grouped fixed effects)

▶ For a given θ denote the choice probabities for player i at time t and
market m as Pi (a

mt
i |xmt ; θ)(

P(θ),V (θ)
)
∈ E(Ψ, θ) : P(θ) =

{
Pi (a

mt
i |xmt ; θ)

}
i,m,t

▶ MLE estimator θ̂ML is given by

θ̂ML = argmax
θ

[
max

(P(θ),V (θ)∈E(Ψ,θ)

1
M

N∑
i=1

M∑
m=1

T∑
t=1

logPi (āi
mt |x̄mt ; θ)

]
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MLE via Constrained Optimization Approach

▶ Idea: use discretized values of P and V as variables
▶ Augmented log-likelihood function is

L(Z ,P, θ) = 1
M

N∑
i=1

M∑
m=1

T∑
t=1

logPi (āi
mt |x̄mt ; θ)

▶ The constrained optimization formulation of the ML estimation
problem is

max
θ,P,V

L(Z ,P, θ) subject to

{
V = ΨV (V ,P, θ)

P = ΨP(V ,P, θ)

▶ Math programming with equilibrium constraints (MPEC)
▶ Does not rely as much on the structure of the problem
▶ Much bigger computational problem
▶ Implements the same MLE estimator (when it works)

Su (2013); Egesdal, Lai and Su (2015)
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Estimation methods for dynamic stochastic games

▶ Two step (CCP) estimators
▶ Fast, do not impose equilibrium constraints, finite sample bias
1. Estimate CCP → P̂
2. Method of moments • Minimal distance • Pseudo likelihood

Hotz, Miller (1993); Altug, Miller (1998); Pakes, Ostrovsky, and
Berry (2007); Pesendorfer, Schmidt-Dengler (2008)

▶ Nested pseudo-likelihood (NPL)
▶ Recursive two step pseudo-likelihood
▶ Bridges the gap between efficiency and tractability
▶ Unstable under multiplicity

Aguirregabiria, Mira (2007); Aguirregabiria, Marcoux (2021)

▶ Efficient pseudo-likelihood (EPL)
▶ Incorporates Newton step in the NPL operator
▶ More robust to the stability and multiplicity of equilibria

Dearing, Blevins (2024), ReStud
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Overview of NRLS

Full solution nested fixed point MLE estimator
with computational enhancements to ensure tractability

▶ Robust and computationally feasible(?) MLE estimator
for directional dynamic games (DDG)

▶ Rely of full solution algorithm that provably computes all MPE
under certain regularity conditions

▶ Employ discrete programming method (BnB) to maximize likelihood
function over the finite set of equilibria

▶ Use non-parametric likelihood to refine BnB algorithm

▶ Fully robust to multiplicity of MPE
▶ Relax single-equilibrium-in-data assumption
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ROAD MAP

1. Solving directional dynamic games (DDGs):
▶ Simple example: Bertrand pricing and investment game
▶ State recursion algorithm
▶ NRLS: NFXP using the Recursive lexicographical search (RLS)

algorithm

2. Structural estimation of DDGs using Nested RLS
▶ Branch-and-bound on RLS tree
▶ Non-parametric likelihood bounding

3. Monte Carlo: (Compare NRLS, two-step CCP, NPL, EPL, MPEC)
▶ One equilibrium in the model and data
▶ Multiplicity of equilibria at true parameter
▶ (Multiple equilibria in the data)



Amcor-Visy collusion case

▶ Australian market for cardboard is essentially a duopoly
▶ Between 2000 and 2005 Visy and Amcor colluded to divide the

market of cardboard and to fix prices
▶ 2007: Visy admits to have been manipulating the market, issued

with $36 million fine
▶ July 2009: Cadbury vs. Amcor, damages estimated at $235.8

million, settles out of court
▶ March 2011: Class action suit against both Amcor and Visy settles

out of court for $95 million
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Cardboard industry in Australia

▶ Cardboard is a highly standardized product
▶ Bertrand price competition with strong incentives for price cutting
▶ Amcor and Visy do minimal amounts of R&D themselves,
▶ Instead purchase new technology from other companies to reduce

cost of production
▶ Amcor plans to build state-of-the-art paper mill in Botany Bay

before the collusion took place
▶ “B9” plant finally opened on February 1, 2013

Leapfrogging equilibrium
▶ Firms invest in alternating fashion and take turns in cost leadership
▶ Market price makes permanent downward shifts
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Dynamic Bertrand price competition

Directional stochastic dynamic game
▶ Two Bertrand competitors, n = 2, no entry or exit
▶ Discrete time, infinite horizon (t = 1, 2, . . . ,∞)
▶ Firms maximize expected discounted profits
▶ Each firm has two choices in each period:

1. Price for the product — simultaneous
2. Whether or not to buy the state of the art technology

▶ Simultaneous moves
▶ Alternating moves

Static Bertrand price competition in each period
▶ Continuum of consumers make static purchase decision
▶ No switching costs: buy from the lower price supplier
▶ Per period profits (ci is the marginal cost)

ri (c1, c2) =

{
0 if ci ≥ cj
cj − ci if ci < cj
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Cost-reducing investments

State-of-the-art production cost c process
▶ Initial value c0, lowest value 0: 0 ≤ c ≤ c0
▶ Discretized with n points
▶ Follows exogenous Markov process and only improves
▶ Markov transition probability π(ct+1|ct)

π(ct+1|ct) = 0 if ct+1 > ct

State space of the problem
▶ State of the game: cost structure (c1, c2, c)

▶ State space is S = (c1, c2, c) ⊂ R3: c1 ≥ c , c2 ≥ c

▶ Actions are observable
▶ Private information EV(1) i.i.d. shocks ηϵi,I and ηϵi,N
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Bellman equations, firm 1, simultaneous moves

V1(c1, c2, c , ϵ1) = max
[
v1(I , c1, c2, c) + ηϵ1(I ), v1(N, c1, c2, c) + ηϵ1(N)

]
v1(N, c1, c2, c) = r1(c1, c2) + βEV1(c1, c2, c ,N)

v1(I , c1, c2, c) = r1(c1, c2)− K (c) + βEV1(c1, c2, c , I )

With extreme value shocks, the investment probability (CCP) is

P1(I |c1, c2, c) =
exp{v1(I , c1, c2, c)/η}

exp{v1(I , c1, c2, c)/η}+ exp{v1(N, c1, c2, c)/η}

▶ There is a separate Bellman equation for player 2, with “outputs” V2
and P2, where P2(I |c1, c2, c) is firm 2’s probability of investing in
state (c1, c2, c).
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Bellman equations, firm 1, simultaneous moves

The expected values are given by

EV1(c1, c2, c ,N) =∫ c

0

[
P2(I |c1, c2, c)H1(c1, c , c

′) + [1 − P2(I |c1, c2, c)]H1(c1, c2, c
′)

]
π(dc ′|c)

EV1(c1, c2, c , I ) =∫ c

0

[
P2(I |c1, c2, c)H1(c , c , c

′) + [1 − P2(I |c1, c2, c)]H1(c , c2, c
′)

]
π(dc ′|c)

H1(c1, c2, c) = η log
[
exp

(
vN
1 (c1, c2, c)/η

)
+ exp

(
v I
1(c1, c2, c)/η

)]
.

is the “smoothed max” or logsum function
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Discretized state space = a “quarter pyramid”
S = {(c1, c2, c)|c1 ≥ c, c2 ≥ c, c ∈ [0, 3]}, n = 4

(0,0,0)

(0,3,0)

(3,0,0)

(3,3,3)
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Transitions due to technological progress
As c decreases, the game falls through the layers of the pyramid
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Game dynamics: example
The game starts at the apex, as some point technology improves
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Game dynamics: example
Both firms buy new technology c = 2 ⇝ (c1, c2, c) = (2, 2, 2)
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Game dynamics: example
State-of-the-art technology becomes c = 1 ⇝ (c1, c2, c) = (2, 2, 1)
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Game dynamics: example
Firm 1 invests and becomes cost leader ⇝ (c1, c2, c) = (1, 2, 1)
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Game dynamics: example
State-of-the-art technology becomes c = 0 ⇝ (c1, c2, c) = (1, 2, 0)

16 / 49



Game dynamics: example
Firm 2 leapfrogs firm 1 to become new cost leader ⇝ (c1, c2, c) = (1, 0, 0)
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Game dynamics: example
A particular sequence of investment decisions along technological progress pass
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Transitions due to technological progress
As c decreases, the game falls through the layers of the pyramid
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Strategy-specific partial order on S
Strategy σ1 of firm 1: invest at all interior points
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Strategy-specific partial order on S
Strategy σ2 of firm 2: invest at all edge points
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Strategy-specific partial order on S
Strategy σ = (σ1, σ2) of both firms
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Strategy independent partial order on S
Coarsest common refinement of partial orders induced by all strategies
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Definition of the Dynamic Directional Games

Finite state Markovian stochastic game is a DDG if it holds:
1. Every feasible Markovian strategy σ satisfies the no loop condition.

2. Every pair of feasible Markovian strategies σ and σ′ induce
consistent partial orders on the state space.

Iskhakov, Rust and Schjerning (2016)
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DAG recursion to partition S into stages
Identify terminal states
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DAG recursion to partition S into stages
Remove terminal states
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DAG recursion to partition S into stages
Identify terminal states

22 / 49



DAG recursion to partition S into stages
Remove terminal states
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Total order on the set of stages
After running a topoligical sort algorithm on the DAG
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Subgames of DDG and continuation strategies
Subgames and continuation strategies
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State recursion algorithm
Backward induction on stages of DDG
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State recursion algorithm
Backward induction on stages of DDG
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State recursion algorithm
Backward induction on stages of DDG
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Examples of Directional Dynamic Games

Many games have state dynamic evolutions described by a DAGs

Judd, Schmedders, Yeltekin (2012), IER
“Optimal rules for patent researchers”

Dube, Hitsch, Chintagunta (2010), Marketing Science
“Tipping and concentration in markets with indirect network effects”
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Tennis is a Directional Dynamic Game
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“Disequilibrium Play in Tennis”
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Multiplicity of stage equibiria
Number of equilibria in the higher stages depends on the selected equilibria

▶ State recursion proceeds conditional on equilibrium selection rule
▶ Multiplicity of stage equilibria ⇔ multiplicity
▶ Can systematically combine different stage equilibria

? ?

?

?

? 3

1

1

1

1

1
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Best response functions
Typically one or three stage equilibria, but may be 5

▶ Smooth best response function with η > 0
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Recursive Lexicographic Search Algorithm

Building blocks of RLS algorithm:
1. State recursion algorithm solves the game conditional on equilibrium

selection rule (ESR)
2. RLS algorithm efficiently cycles through all feasible ESRs

Challenge:
▶ Choice of a particular MPE for any stage game at any stage
▶ may alter the set and even the number of stage equilibria at earlier

stages

Solution: RLS = depth-first tree traversal (illustration coming)
▶ Root of the tree is one of the absorbing states
▶ Levels of the tree correspond to the state points
▶ Branching happens when stages have multiple equilibria
▶ MPE of the game is given by a path from root to a leaf
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RLS Tree Traversal, step 1
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RLS Tree Traversal, step 2
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RLS Tree Traversal, step 3
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RLS Tree Traversal, step 4
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RLS Tree Traversal, step 5
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RLS Tree Traversal, step 6
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RLS Tree Traversal, step 7
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RLS Tree Traversal, step 8
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Recursive Lexicographic Search (RLS) algorithm

Theorem (RLS theorem)

Assume there exists an algorithm that can find all MPE of every stage
game of the DDG, and that the number of these equilibria is finite in
every stage game.
Then the RLS algorithm finds all MPE of the DDG in a finite number of
steps, which equals the total number of MPE.

Iskhakov, Rust and Schjerning, 2016, ReStud
“Recursive lexicographical search: Finding all markov perfect equilibria of
finite state directional dynamic games.”
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ROAD MAP

1. Solving directional dynamic games (DDGs):
▶ Simple example: Bertrand pricing and investment game
▶ State recursion algorithm
▶ Recursive lexicographical search (RLS) algorithm

2. Structural estimation of DDGs using Nested RLS
▶ Branch-and-bound on RLS tree
▶ Non-parametric likelihood bounding

3. Monte Carlo: (Compare NRLS, two-step CCP, NPL, EPL, MPEC)
▶ One equilibrium in the model and data
▶ Multiplicity of equilibria at true parameter
▶ (Multiple equilibria in the data)



Nested Recursive Lexicographical Search (NRLS)

▶ Data from M independent markets from T periods
Z =

{
ajt , x jt

}
j∈{1,...,N},t∈{1,...,T}

▶ Let the set of all MPE equilibria be E = {1, . . . ,K (θ)}
1. Outer loop

Maximization of the likelihood function w.r.t. to structural
parameters θ

θML = argmax
θ∈Θ

L(Z , θ)

2. Inner loop
Maximization of the likelihood function w.r.t. equilibrium selection

L(Z , θ) = arg max
k∈{1,...,K(θ)}

L(Z , θ,V k
θ )

Max of a function on a discrete set organized into RLS tree
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Likelihood over the state space

▶ Given equilibrium k choice probabilities Pk
i (a|x), likelihood is

L(Z , θ,V k
θ ) =

N∑
j=1

T∑
t=1

J∑
i=1

logPk
i (a

jt
i |x jt ; θ)

▶ Let ι index points in the state space
ι = 1 initial point, ι = S the terminal state

▶ Denote nι the number of observations in state xι and naiι the
number of observations of player i taking action ai at xι

nι =
N∑
j=1

T∑
t=1

1{x jt = xι} naiι =
N∑
j=1

T∑
t=1

1{ajti = ai , x
jt = xι}

▶ Then equilibrium-specific likelihood can be computed as

L(Z , θ,V k
θ ) =

S∑
ι=1

J∑
i=1

∑
a

naiι logPk
i (a|xι; θ)
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Data distribution over the state space
1000 markets, 5 time periods, init at apex of the pyramid
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Branch and bound (BnB) method

Land and Doig, 1960 Econometrica
▶ Old method for solving integer programming problems

▶ Branching: RLS tree
▶ Bounding: The bound function is partial likelihood of equilibrium k

calculated on the subset of states ι ∈ S ⊂ {1, . . . ,S}

Lpart(ZS , θ,V k
θ ) =

∑
ι∈S

J∑
i=1

∑
a

naiι logPk
i (a|xι; θ)

▶ Where ZS = {(a, x) : x ∈ S} denotes data observed on S
▶ Monotonic decreasing in cardinality of S

(declines as more data is added)
▶ Equals to the full log-likelihood on the full state space when ZS = Z

(at the leafs of RLS tree)
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BnB on RLS tree, step 1

14 13 12 11 10 Partial loglikelihood = -3.2
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BnB on RLS tree, step 2

14 13 12 11 10

9 pll=-5.1

9 pll=-9.7

9 pll=-4.8
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BnB on RLS tree, step 3

14 13 12 11 10
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8 pll=-5.2
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BnB on RLS tree, step 4

14 13 12 11 10
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BnB on RLS tree, step 5
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BnB on RLS tree, step 6
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BnB on RLS tree, step 7
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BnB on RLS tree, step 8

14 13 12 11 10
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BnB on RLS tree, step 9

14 13 12 11 10
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BnB on RLS tree, step 10
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BnB on RLS tree, step 11
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BnB on RLS tree, step 12
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BnB on RLS tree, step 28
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BnB on RLS tree, step 29

14 13 12 11 10

9 pll=-5.1

9 pll=-9.7

9

8 7

6 pll=-10.1

6 5 4 3

2 pll=-9.9

2 pll=-9.5

2 1 pll=-10.46 5 4

8

8

7 6 5

7

7

6

6

6 5 4 3

2

2 1 RECORD=-10.2

2 1

34 / 49



BnB on RLS tree, step 30
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BnB on RLS tree, step 31
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BnB on RLS tree, step 33
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BnB on RLS tree, step 34
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Non-parametric likelihood bounding

▶ Replace choice probabilities Pk
i (a|xι; θ) with frequencies naι/nι

Lnon-par(ZS) =
∑
ι∈S

J∑
i=1

∑
a

naiι log(naι/nι)

▶ Lnon-par(ZS) depends only on the counts from the data!

▶ Not hard to show algebraically that for any ZS (≈Gibbs inequality)

Lnon-par(ZS) > Lpart(ZS , θ,V k
θ )

▶ Therefore partial likelihood can be optimistically extrapolated by
empirical likelihood at any step ι of the RLS tree traversal

Lpart(Z{S,S−1,...,ι}, θ,V k
θ ) + Lnon-par(Z{ι−1,...,1})

▶ Augmented partial likelihood is much more powerful bound for BnB
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Non-parameteric likelihood bounding
ι = S = 14 (terminal state) on the left, ι = 1 (initial state) on the right
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BnB with non-parameteric likelihood bound
Greedy traversal + non-parameteric likelihood bound
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BnB with non-parameteric likelihood bound, larger sample
Non-parametric → parametric likelihood as N → ∞ at true θ ⇒ even less computation
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Full enumeration RLS in larger sample
Comparing with the previous slide most of the computation is avoided!
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BnB refinement with non-parametric likelihood

▶ For any amount of data the non-parametric likelihood is greater or
equal to the parametric likelihood algebraically

▶ BnB augmented with non-parameteric likelihood bound gives
sharper Bounding Rules → less computation

▶ Wih more data as M → ∞
▶ Non-parametric log-likelihood converge to the likelihood line
▶ The width of the band between the blue lines in the plots decreases

→ Even sharper Bounding Rules
→ Even less computation

MLE for any sample size, but easier to compute with more data!
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ROAD MAP

1. Solving directional dynamic games (DDGs):
▶ Simple example: Bertrand pricing and investment game
▶ State recursion algorithm
▶ Recursive lexicographical search (RLS) algorithm

2. Structural estimation of DDGs using Nested RLS
▶ Branch-and-bound on RLS tree
▶ Non-parametric likelihood bounding

3. Monte Carlo: (Compare NRLS, two-step CCP, NPL, EPL, MPEC)
▶ One equilibrium in the model and data
▶ Multiplicity of equilibria at true parameter
▶ (Multiple equilibria in the data)



Monte Carlo simulations

A

Single equilibrium in the model
One equilibrium in the data

B

Multiple equilibria in the model
Same equilibrium played the data

C

Multiple equilibria in the model
Multiple equilibria in the data:
▶ Long panels, each market plays

their own equilibrium
▶ Groups of markets play the

same equilibrium
(not today)
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Implementation details

▶ Two-step estimator, NPL and EPL
▶ Matlab unconstrained optimizer (with numerical derivatives)
▶ CCPs from frequency estimators
▶ Max 120 iterations (for NPL and EPL)

▶ MPEC
▶ Matlab constraint optimizer (interior-point) with analytic derivatives
▶ MPEC-VP: Constraints on both values and choice probabilities (as in

Egesdal, Lai and Su, 2015)
▶ MPEC-P: Constraints in terms of choice probabilities + Hotz-Miller

inversion (twice less variables)
▶ Starting values from two-step estimator

▶ Estimated parameter k1

▶ Sample size: 1000 markets in 5 time periods
▶ Parameters are chosen to ensure good coverage of the state space

and non-degenerate CCPs in all states
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Monte Carlo A, run 1: no multiplicity

Number of equilibria at true parameter: 1
Number of equilibria in the data: 1

2step NPL EPL MPEC-VP MPEC-P NRLS
True k1 = 3.5 3.52786 3.49714 3.49488 3.49488 3.49486 3.49488
Bias 0.02786 -0.00286 -0.00512 -0.00512 -0.00514 -0.00512
MCSD 0.10037 0.06522 0.07042 0.07042 0.07078 0.07042
ave log-like -1.16661 -1.16144 -1.16143 -1.16143 -1.16139 -1.16143
log-likelihood -5833.07 -5807.21 -5807.16 -5807.16 -5806.95 -5807.16
log-like short - -0.050 -0.000 -0.000 -0.000 -0.000
KL divergence 0.03254 0.00021 0.00024 0.00024 0.00024 0.00024
||P − P0|| 0.11270 0.00469 0.00495 0.00495 0.00500 0.00495
||Ψ(P) − P|| 0.16185 0.0000 0.0000 0.0000 0.0000 0.0000
||Γ(v) − v || 0.87095 0.00000 0.00000 0.00000 0.00000 0.00000
Convrged of 100 - 100 100 100 99 100

▶ Equilibrium conditions satisfied (except 2step)
▶ Nearly all MLE estimators identical to the last digit
▶ NPL and EPL estimators approach MLE
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Monte Carlo B, run 1: little multiplicity

Number of equilibria at true parameter: 3
Number of equilibria in the data: 1
Data generating equilibrium: stable

2step NPL EPL MPEC-VP MPEC-P NRLS
True k1=7.5 7.55163 7.49844 7.49918 7.65318 7.35124 7.49919
Bias 0.05163 -0.00156 -0.00082 0.15318 -0.14876 -0.00081
MCSD 0.17875 0.06062 0.03413 0.99742 0.47136 0.03413
ave log-like -0.84779 -0.84425 -0.84421 -0.88682 -0.87541 -0.84421
log-likelihood -21194.86 -21106.33 -21105.13 -22170.40 -21885.37 -21105.13
log-like short - -1.206 -0.000 -1062.740 -776.809 -0.000
KL divergence 0.02557 0.00040 0.00013 0.23536 0.16051 0.00013
||P − P0|| 0.11085 0.00490 0.00280 0.17466 0.20957 0.00280
||Ψ(P) − P|| 0.170940 0.000000 0.000000 0.000000 0.000000 0.000000
||Γ(v) − v || 1.189853 0.000000 0.000000 0.000000 0.000000 0.000001
N runs of 100 100 100 100 98 97 100

▶ MPEC convergence deteriorates
▶ Equilibrium conditions are satisfied, but estimators start to converge

to wrong equilibria
(as seen from KL divergence from the data generating equilibrium)
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Likelihood correspondence
Lines are costructed using symmetric KL-divergence
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Monte Carlo B, run 2: little multiplicity, unstable

Number of equilibria at true parameter: 3
Number of equilibria in the data: 1
Data generating equilibrium: unstable

2step NPL EPL MPEC-VP MPEC-P NRLS
True k1=7.5 7.54238 7.39276 7.48044 7.73133 7.63100 7.50176
Bias 0.04238 -0.10724 -0.01956 0.23133 0.13100 0.00176
MCSD 0.17145 0.05608 0.15801 0.72988 0.89874 0.03820
ave log-like -0.86834 -0.89374 -0.86550 -0.88512 -0.90196 -0.86504
log-likelihood -21708.60 -22343.58 -21637.54 -22127.91 -22549.06 -21626.12
log-like short - -765.242 -11.413 -502.121 -920.643 -0.000
KL divergence 0.02271 0.15996 0.00257 0.11452 0.20182 0.00012
||P − P0|| 0.09757 0.20709 0.00619 0.03860 0.02504 0.00307
||Ψ(P) − P|| 0.160102 0.000000 0.000000 0.000000 0.000000 0.000000
||Γ(v) − v || 1.126738 0.000000 0.000000 0.000000 0.000000 0.000001
N runs of 100 100 18 100 99 98 100

▶ NPL estimator fails to converge
▶ Similar convergence issues for MPEC
▶ EPL estimator performs well

Aguirregabiria, Marcoux (2021)
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Likelihood correspondence
Lines are costructed using symmetric KL-divergence
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Monte Carlo B, run 3: discontinuous likelihood

Number of equilibria at true parameter: 9
Number of equilibria in the data: 1
Data generating equilibrium: unstable, near “cliffs”

2step NPL EPL MPEC-VP MPEC-P NRLS
True k1=3.5 3.49739 3.55144 3.64772 3.65943 3.67027 3.50212
Bias -0.00261 0.05144 0.14772 0.15943 0.17027 0.00212
MCSD 0.13999 0.07133 0.12900 0.12693 0.11583 0.03255
ave log-like -0.27494 -0.29474 -0.29528 -0.30330 -0.30257 -0.25086
log-likelihood -1374.721 -1473.695 -1476.425 -1516.503 -1512.847 -1254.320
log-like short - -219.375 -222.104 -270.999 -267.523 -0.000
KL divergence 0.01512 0.04889 0.04495 0.04102 0.04078 0.00016
||P − P0|| 0.62850 0.86124 0.83062 0.66562 0.65879 0.01610
||Ψ(P) − P|| 0.763764 0.000000 0.000000 0.000000 0.000000 0.000002
||Γ(v) − v || 0.852850 0.000000 0.000000 0.000000 0.000000 0.000005
N runs of 100 100 100 100 28 27 100

▶ Similar convergence issues
▶ Poor estimates by EPL, NPL and MPEC

(constraints are satisfied, yet low likelihood and high KL divergence)
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Likelihood correspondence
Lines are costructed using symmetric KL-divergence
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Monte Carlo B, run 4: massive multiplicity

Number of equilibria at true parameter: 2455
Number of equilibria in the data: 1
Time to enumerate all equilibria (RLS): 10m 39s

1-NPL NPL EPL NRLS
True k1=3.75 3.70959 3.71272 3.78905 3.74241
Bias -0.04041 -0.03728 0.03905 -0.00759
MCSD 0.11089 0.06814 0.40716 0.03032
ave log-likelihood -0.38681557 -0.37348793 -0.45256293 -0.35998461
log-likelihood -1934.078 -1867.440 -2262.815 -1799.923
log-like shortfall - -66.529 -467.607 -0.000
KL divergence Inf 14.07523 12231.59186 0.32429
||P − P0|| 0.82204 0.65580 0.79241 0.07454
||Ψ(P) − P|| 0.963574 0.000000 0.000000 0.000006
||Γ(v) − v || 7.020899 0.000000 0.000000 0.000008
N runs of 100 100 18 68 100
CPU time 0.159s 11.262s 4.013s 4.731s

▶ Severe convergence problems for NPL and EPL
▶ Poor eqb identification (low likelihood and high KL divergence)
▶ NRLS has comparable CPU time (much faster than full enumeration)
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Monte Carlo C, multiple equilibria in the data

The path forward:
▶ Assume that the same equilibrium is played in each market over time
▶ Grouped fixed-effects, groups defined by the equilibria played

1. Joint grouped fixed-effects estimation
▶ Estimate the partition of the markets into groups playing different

equilibria together with θ
▶ For each market compute maximum likelihood over all equilibria and

“assign” it to the relevant group (estimation+classification)
▶ Computationally very demanding: BnB market-by-market,

non-parametric refinement has no bite

2. Two-step grouped fixed-effects estimation
▶ Step 1: partition the markets based on some observable

characteristics (K-means clustering)
▶ Step 2: estimate θ allowing different equilibria in different groups
▶ Small additional computational cost!

Bonhomme, Manresa (2015); Bonhomme, Lamadon, Manresa (2022)
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NRLS estimator for directional dynamic games

Complicated computational task involving maximization over the large
finite set of all MPE equilibria → branch-and-bound algorithm with
refined bounding rule

NRLS nested structure:
1. Each stage game → non-linear solver, specific to the model
2. Combining stage game solutions to full game MPEs →

State Recursion algorithm
3. Solving for all MPE equilibria → Recursive Lexicographic Search
4. Structural estimation → high-dimensional optimization algorithm

Performance of NRLS

▶ Implementation of statistically efficient estimator (MLE)
▶ Using BnB NRLS avoids full enumeration at no cost.
▶ BnB augmented with non-parameteric likelihood bound gives

sharper Bounding Rules → less computation
▶ Computationally trackable, better performance with more data
▶ Fully robust to multiplicity of equilibria
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