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Estimation of stochastic dynamic games

1. Several decision makers (players)
2. Maximize discounted expected lifetime utility
3. Anticipate consequences of their current actions
4. Anticipate actions by other players in current and future

periods (strategic interaction)
5. Operate in a stochastic environment (state of the game) which

evolution depends on the collective actions of the players

▶ Estimate structural parameters of these models
▶ Focus on multiplicity of equilibria in the model and across

markets in the data
▶ Applications in empirical IO, but also family economics,

structural labor, public economics, etc.
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Estimation of stochastic dynamic games is hard

▶ Finding an equilibrium = solving a large system of non-linear
equations
Computing even a single equilibrium is not a trivial task

▶ Existing literature does not fully explore, and usually assumes
away multiplicity of solutions in the theoretical model
Numerical algorithm inadvertently becomes equilibrium
selection mechanism

▶ Standard assumption in the existing literature is that a single
equilibrium is played in the data

▶ Practical methods rely on convergence of iterative algorithms
or smoothness in the constrains of the optimization problem
Existing methods perform poorly when multiplicity is present
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Equilibrium correspondence and discontinuous likelihood
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Our contribution
Nested Recursive Lexicographical Search (NRLS) estimator

▶ Propose robust maximum likelihood estimator for a subclass of
stochastic dynamic games, directional dynamic games (DDG)

▶ Fully robust to multiplicity of equilibria
▶ Relax single-equilibrium-in-data assumption

▶ Nested MLE estimator: model solved for each trial value of
parameters

▶ Employ algorithm from integer programming to maximize
likelihood function over the finite set of equilibria
The algorithm is computationally more efficient in larger
samples, while delivering exact MLE in all samples

▶ Provide Monte Carlo evidence of computational feasibility
▶ Compare to a battery of existing estimators:

CCP/PML, NPL, EPL and MPEC
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Markov Perfect Equilibria

▶ Discrete-time infinite-horizon dynamic stochastic games with
discrete states and actions

▶ MPE is a pair of strategy profiles and value functions such that

V = ΨV (V ,P, θ) (Bellman equations)
P = ΨP(V ,P, θ) (CCPs = mutual best responces)

▶ Ψ =
(
ΨV ,ΨP

)
gives the structure of the model

▶ Denote the set of all equilibria in the model as

E(Ψ, θ) =

{
(P,V )

∣∣∣∣ V = ΨV (V ,P, θ)
P = ΨP(V ,P, θ)

}

▶ Plan: full solution MLE estimator with NFXP structure:
solve for all MPE equilibria for each trial value of θ
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Maximum Likelihood Estimation

▶ Data from M independent markets from T periods

Z =
{
āmt , x̄mt

}
m∈M,t∈T

▶ Assume that only one equilibrium is played in the data
(we relax this assumption later → grouped fixed effects)

▶ For a given θ denote the choice probabities for player i at time
t and market m as Pi (a

mt
i |xmt ; θ)(

P(θ),V (θ)
)
∈ E(Ψ, θ) : P(θ) =

{
Pi (a

mt
i |xmt ; θ)

}
i ,m,t

▶ MLE estimator θ̂ML is given by

θ̂ML = argmax
θ

[
max

(P(θ),V (θ)∈E(Ψ,θ)

1
M

N∑
i=1

M∑
m=1

T∑
t=1

logPi (āi
mt |x̄mt ; θ)

]
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MLE via Constrained Optimization Approach

▶ Idea: use discretized values of P and V as variables
▶ Augmented log-likelihood function is

L(Z ,P, θ) = 1
M

N∑
i=1

M∑
m=1

T∑
t=1

logPi (āi
mt |x̄mt ; θ)

▶ The constrained optimization formulation of the ML
estimation problem is

max
θ,P,V

L(Z ,P, θ) subject to

{
V = ΨV (V ,P, θ)

P = ΨP(V ,P, θ)

▶ Math programming with equilibrium constraints (MPEC)
▶ Does not rely as much on the structure of the problem
▶ Much bigger computational problem
▶ Implements the same MLE estimator (when it works)

Su (2013); Egesdal, Lai and Su (2015)
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Estimation methods for dynamic stochastic games

▶ Two step (CCP) estimators
▶ Fast, do not impose equilibrium constraints, finite sample bias
1. Estimate CCP → P̂
2. Method of moments • Minimal distance • Pseudo likelihood

Hotz, Miller (1993); Altug, Miller (1998); Pakes, Ostrovsky, and
Berry (2007); Pesendorfer, Schmidt-Dengler (2008)

▶ Nested pseudo-likelihood (NPL)
▶ Recursive two step pseudo-likelihood
▶ Bridges the gap between efficiency and tractability
▶ Unstable under multiplicity

Aguirregabiria, Mira (2007); Aguirregabiria, Marcoux (2021)

▶ Efficient pseudo-likelihood (EPL)
▶ Incorporates Newton step in the NPL operator
▶ More robust to the stability and multiplicity of equilibria

Dearing, Blevins (2024), ReStud (forthcoming)
9 / 35



Overview of NRLS

Full solution nested fixed point MLE estimator
with computational enhancements to ensure tractability

▶ Robust and computationally feasibleMLE estimator
for directional dynamic games (DDG)

▶ Rely of full solution algorithm that provably computes all MPE
under certain regularity conditions

▶ Employ discrete programming method (BnB) to maximize
likelihood function over the finite set of equilibria

▶ Use non-parametric likelihood to refine BnB algorithm

▶ Fully robust to multiplicity of MPE
▶ Relax single-equilibrium-in-data assumption
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Strategy-specific partial order on game state space

Non-zero transition probabilities corresponding to any strategy
profile σ induce a partial order on the state space
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Strategy independent partial order on the state space
Coarsest common refinement of partial orders induced by all strategies

All possible transitions under any strategy profile
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Definition of the Dynamic Directional Games

Finite state Markovian stochastic game is a DDG if it holds:

1. Every feasible strategy σ satisfies the no loop condition.

2. Every pair of feasible Markovian strategies σ and σ′ induce
consistent partial orders on the state space.

In this case the strategy independent partial order is given by a
directional acyclig graph (DAG) with self loops

Iskhakov, Rust and Schjerning (2016) Review of Economic Studies
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Total order on the set of stages
After running a topoligical sort algorithm on the DAG
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Subgames of DDG and continuation strategies
Only solution in continuation strategies is requires in each stage

Stage recursion algorith = generalization of backward induction
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Examples of Directional Dynamic Games

Many games have state dynamic evolutions described by a DAGs

Judd, Schmedders, Yeltekin (2012), IER
“Optimal rules for patent researchers”

Dube, Hitsch, Chintagunta (2010), Marketing Science
“Tipping and concentration in markets with indirect network effects”
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Tennis is a Directional Dynamic Game
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Multiplicity of stage equibiria
Number of equilibria in the higher stages depends on the selected equilibria

▶ State recursion proceeds conditional on equilibrium selection
rule

▶ Multiplicity of stage equilibria ⇔ multiplicity
▶ Can systematically combine different stage equilibria
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Recursive Lexicographic Search Algorithm

Building blocks of RLS algorithm:
1. State recursion algorithm solves the game conditional on

equilibrium selection rule (ESR)
2. RLS algorithm efficiently cycles through all feasible ESRs

Challenge:
▶ Choice of a particular MPE for any stage game at any stage
▶ may alter the set and even the number of stage equilibria at

earlier stages

Solution: RLS = depth-first tree traversal (illustration coming)
▶ Root of the tree is one of the absorbing states
▶ Levels of the tree correspond to the state points
▶ Branching happens when stages have multiple equilibria
▶ MPE of the game is given by a path from root to a leaf
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RLS as tree traversal

▶ Levels of the tree
are points in the
state space

▶ Root is the
absorbing state

▶ Leafs correspond
to the apex

▶ MPE = path
through the tree
from root to leaf

▶ RLS algorithm =
depth-first tree
traversal
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Nested Recursive Lexicographical Search (NRLS)

▶ Data from M independent markets from T periods
Z = {āmt , x̄mt}m∈{1,...,M},t∈{1,...,T}

▶ Let the set of all MPE equilibria be E = {1, . . . ,K (θ)}
1. Outer loop

Maximization of the likelihood function w.r.t. to structural
parameters θ

θML = argmax
θ∈Θ

L(Z , θ)

2. Inner loop
Maximization of the likelihood function w.r.t. equilibrium
selection

L(Z , θ) = max
k∈{1,...,K(θ)}

L(Z , θ,Pk
θ )

Max of a function on a discrete set organized into RLS tree
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Likelihood over the state space

▶ Given equilibrium k choice probabilities Pk
θ (a|x) likelihood is

L(Z , θ,Pk
θ ) =

1
M

M∑
m=1

T∑
t=1

N∑
i=1

logPk
i (āi

mt |x̄mt ; θ)

▶ Let ι index points in the state space, ι ∈ {1, . . . ,S}
ι = 1 initial point, ι = S the terminal (absorbing) state

▶ Denote nι the number of observations in state xι and naiι the
number of observations of player i taking action ai at xι

nι =
M∑

m=1

T∑
t=1

1{x̄mt = xι} naiι =
M∑

m=1

T∑
t=1

1{āimt = ai , x̄
mt = xι}

▶ Then equilibrium-specific likelihood can be computed as

L(Z , θ,Pk
θ ) =

1
M

S∑
ι=1

N∑
i=1

∑
a

naiι logPk
i (a|xι; θ)
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Data distribution over the state space
1000 markets, 5 time periods, init at apex of the pyramid
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Branch and bound (BnB) method
Old method for solving integer programming problems

1. Form a tree of subdivisions of the set of admissible plans
=⇒ RLS tree

2. Specify a bounding function representing the best attainable
objective on a given subset (branch)
=⇒ Partial likelihood function from subset of states S

Lpart(ZS , θ,V k
θ ) =

∑
ι∈S

N∑
i=1

∑
a

naiι logPk
i (a|xι; θ)

where ZS = {(a, x) : x ∈ S ⊂ {1, . . . ,S}} denotes data on S
▶ Monotonic decreasing in cardinality of S

(declines as more data is added)
▶ Equals to full log-likelihood on full state space when ZS = Z

3. Dismiss the subsets of the plans where the bound is below the
current best attained value of the objective

Ailsa Land and Alison Doig (Harcourt), 1960 Econometrica
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BnB on RLS tree, step 1

14 13 12 11 10 Partial loglikelihood = -3.2
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BnB on RLS tree, step 2
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BnB on RLS tree, step 3
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BnB on RLS tree, step 4
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BnB on RLS tree, step 5

14 13 12 11 10

9 pll=-5.1

9 pll=-9.7

9

8 pll=-8.9

8 pll=-14.9

8

7 pll=-5.2

7 pll=-11.2

7

6 pll=-10.9

6 pll=-12.4

6 pll=-9.5

24 / 35



BnB on RLS tree, step 6
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BnB on RLS tree, step 7
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BnB on RLS tree, step 8
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BnB on RLS tree, step 9
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BnB on RLS tree, step 10
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BnB on RLS tree, step 11
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BnB on RLS tree, step 12
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BnB on RLS tree, step 28
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BnB on RLS tree, step 29
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BnB on RLS tree, step 30
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BnB on RLS tree, step 31
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BnB on RLS tree, step 33
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BnB on RLS tree
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After the whole tree is traversed the exact maximum is found!
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Non-parametric likelihood bounding

▶ Idea: augment the partial likelihood bounding function with
non-parametric likelihood computed on the “rest of the data”

▶ Parametric choice probabilities Pk
i (a|xι; θ) → freq naiι /nι

Lnon-par(ZS) =
∑
ι∈S

N∑
i=1

∑
a

naiι log(naiι /nι)

▶ Lnon-par(ZS) depends only on the counts from the data!
▶ Not hard to show algebraically that for any ZS (≈ Gibbs ineq)

Lnon-par(ZS) > Lpart(ZS , θ,Pk
θ ) ∀S

▶ Therefore partial likelihood can be optimistically extrapolated
by empirical likelihood at any step ι of the RLS tree traversal

Lpart(Z {S ,S−1,...,ι}, θ,Pk
θ ) + Lnon-par(Z {ι−1,...,1})

▶ Augmented partial likelihood is more powerful bound for BnB
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Non-parameteric likelihood bounding
ι = S = 14 (terminal state) on the left, ι = 1 (initial state) on the right
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BnB with non-parameteric likelihood bound
Greedy traversal + non-parameteric likelihood bound
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BnB with non-parameteric likelihood bound, larger sample
Non-parametric → parametric likelihood as N → ∞ at true θ ⇒ even less computation
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BnB refinement with non-parametric likelihood

▶ For any amount of data the non-parametric likelihood is
greater or equal to the parametric likelihood algebraically

▶ BnB augmented with non-parameteric likelihood bound gives
sharper Bounding Rules → less computation

▶ Wih more data as M → ∞
▶ Non-parametric log-likelihood → the true partial likelihood

(assuming the model is well-specified and in the neighborhood of the true parameter)

▶ The width of the band between the blue lines in the plots
decreases

→ Even sharper Bounding Rules
→ Even less computation
→ Still delivering exact maximum

MLE for any sample size, but much easier to compute it!
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Monte Carlo simulations using leapfrogging model

A

Single equilibrium in the model
One equilibrium in the data
All estimators work well

B

Multiple equilibria in the model
Same equilibrium played the data

C

Multiple equilibria in the model
Multiple equilibria in the data
Most estimators break down
(work in progress)

▶ Bertrand price competition with cost reducing investments
▶ Number of equilibria ranges from 1 to millions

Iskhakov, Rust and Schjerning (2018) International Economic Review
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Monte Carlo B, run 2: little multiplicity, unstable

Number of equilibria at true parameter: 3
Number of equilibria in the data: 1, DGP is unstable equilibrium

2step NPL EPL MPEC-VP MPEC-P NRLS
True k1=7.5 7.54238 7.39276 7.48044 7.73133 7.63100 7.50176
Bias 0.04238 -0.10724 -0.01956 0.23133 0.13100 0.00176
MCSD 0.17145 0.05608 0.15801 0.72988 0.89874 0.03820
ave log-like -0.86834 -0.89374 -0.86550 -0.88512 -0.90196 -0.86504
log-like short - -765.242 -11.413 -502.121 -920.643 -0.000
KL divergence 0.02271 0.15996 0.00257 0.11452 0.20182 0.00012
||P − P0|| 0.09757 0.20709 0.00619 0.03860 0.02504 0.00307
||Ψ(P)− P|| 0.160102 0.000000 0.000000 0.000000 0.000000 0.000000
||Γ(v)− v || 1.126738 0.000000 0.000000 0.000000 0.000000 0.000001
N runs of 100 100 18 100 99 98 100

▶ Equilibrium conditions satisfied (except 2step)
(as seen from max differences in values and CCP after one iteration of Γ/Ψ)

▶ NPL (when converges) and EPL estimators approach MLE
▶ MPEC converges to wrong equilibria

(as seen from KL divergence from the DGP equilibrium, or CCP differences)

▶ NRLS is right on the target
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Likelihood correspondence
Lines are costructed using symmetric KL-divergence
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Monte Carlo B, run 3: discontinuous likelihood

Number of equilibria at true parameter: 9
Number of equilibria in the data: 1
Data generating equilibrium: unstable, near “cliffs”

2step NPL EPL MPEC-VP MPEC-P NRLS
True k1=3.5 3.49739 3.55144 3.64772 3.65943 3.67027 3.50212
Bias -0.00261 0.05144 0.14772 0.15943 0.17027 0.00212
MCSD 0.13999 0.07133 0.12900 0.12693 0.11583 0.03255
ave log-like -0.27494 -0.29474 -0.29528 -0.30330 -0.30257 -0.25086
log-like short - -219.375 -222.104 -270.999 -267.523 -0.000
KL divergence 0.01512 0.04889 0.04495 0.04102 0.04078 0.00016
||P − P0|| 0.62850 0.86124 0.83062 0.66562 0.65879 0.01610
||Ψ(P)− P|| 0.763764 0.000000 0.000000 0.000000 0.000000 0.000002
||Γ(v)− v || 0.852850 0.000000 0.000000 0.000000 0.000000 0.000005
N runs of 100 100 100 100 28 27 100

▶ Poor estimates by all eqb estimators (EPL, NPL and MPEC)
(constraints are satisfied, yet low likelihood and high KL divergence)

▶ NRLS is right on the target
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Likelihood correspondence
Lines are costructed using symmetric KL-divergence
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Monte Carlo B, run 4: massive multiplicity

Number of equilibria at true parameter: 2455
Number of equilibria in the data: 1
Time to enumerate all equilibria (RLS): 10m 39s

1-NPL NPL EPL NRLS
True k1=3.75 3.70959 3.71272 3.78905 3.74241
Bias -0.04041 -0.03728 0.03905 -0.00759
MCSD 0.11089 0.06814 0.40716 0.03032
ave log-likelihood -0.38681557 -0.37348793 -0.45256293 -0.35998461
log-like shortfall - -66.529 -467.607 -0.000
KL divergence Inf 14.07523 12231.59186 0.32429
||P − P0|| 0.82204 0.65580 0.79241 0.07454
||Ψ(P)− P|| 0.963574 0.000000 0.000000 0.000006
||Γ(v)− v || 7.020899 0.000000 0.000000 0.000008
N runs of 100 100 18 68 100
CPU time 0.159s 11.262s 4.013s 4.731s

▶ Severe convergence problems for NPL and EPL
▶ Poor eqb identification (low likelihood and high KL divergence)
▶ NRLS has comparable CPU time (way faster!)
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Monte Carlo C, multiple equilibria in the data

▶ Assume that the same equilibrium is played in each market
over time (large T asymptotics)

▶ Grouped fixed-effects, groups defined by the equilibria played

1. Joint grouped fixed-effects estimation
▶ For each market compute maximum likelihood over all

equilibria and “assign” it to the relevant group
(estimation+classification)

▶ Computationally very demanding: BnB market-by-market,
non-parametric refinement has no bite

2. Two-step grouped fixed-effects estimation
▶ Step 1: partition the markets based on some observable

characteristics (K-means clustering)
▶ Step 2: estimate θ allowing different equilibria in different

groups
▶ Small additional computational cost!

Bonhomme, Manresa (2015); Bonhomme, Lamadon, Manresa (2022)
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NRLS estimator for directional dynamic games

Complicated computational task involving maximization over the
large finite set of all MPE equilibria → branch-and-bound algorithm
with refined bounding rule

NRLS nested structure:
1. Each stage game → non-linear solver, specific to the model
2. Combining stage game solutions to full game MPEs →

State Recursion algorithm
3. Solving for all MPE equilibria → Recursive Lexicographic

Search
4. Structural estimation → high-dimensional optimization

algorithm

▶ Implementation of statistically efficient estimator (MLE)
▶ Using BnB NRLS avoids full enumeration at no cost.
▶ Computationally trackable, better performance with more data
▶ Fully robust to multiplicity of equilibria
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