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Motivation: Collusion on the beach




Amcor-Visy price fixing

» Amcor Managing Director: Peter Brown
» Visy CEO: Harry Debney
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Amcor-Visy collusion case

AN VisY

» Australian market for cardboard is essentially a duopoly

» Between 2000 and 2005 Visy and Amcor colluded to divide the
market of cardboard and to fix prices

» 2007: Visy admits to have been manipulating the market, issued
with $36 million fine

» July 2009: Cadbury vs. Amcor, damages estimated at $235.8
million, settles out of court

» March 2011: Class action suit against both Amcor and Visy settles
out of court for $95 million
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Cardboard industry in Australia

Bertrand price competition in the short run, with leapfrogging
investments by both firms in the longer run

>

>
>
>

Cardboard is a highly standardized product
Strong incentives for Bertrand-like price cutting
Amcor and Visy do minimal amounts of R&D themselves,

Spend considerable amounts on cost reducing investments
» Amcor plans to build state-of-the-art paper mill in Botany Bay
before the collusion took place
> "“B9" plant finally opened on February 1, 2013

Amcor and Visy purchase new technology from other companies that
specialize in doing the R&D and reduce cost of production of
cardboard
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Amcor’'s New B9 Paper Mill

Main Mill Site, Botany Bay Road, Botany Bay NSW

Source: Amcor
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B9 is an example of leapfrogging

» Amcor's existing paper plant was over 50 years old

>

“The B9 paper machine, so named as it is the ninth paper machine
to operate at the company's Botany site, will produce more than
400,000 tonnes of paper annually when operating at full capacity
and will deliver significant environmental benefits.”

Cost: $500 million, the largest single investment in Amcor's 144 year
history. “Largest and most innovative recycled paper machine of its
kind in Australasia”

“The machine is 330 metres long, and 22 metres high, and produces
1.6 km of paper per minute and reduces water consumption by 26%,
energy usage by 34% and the amount of waste sent to landfill by
75%" (Nigel Garrard, Amcor CEO)

7/60



But collusion caused B9 to be delayed

» Amcor had planned B9 back in 1999, and at that time internal
studies estimated huge rate of return for this investment because it

would enable it to leapfrog Visy to become the low-cost producer of
CFP in Australia.

» Amcor and Visy were locked in a price war that started in 1999,
around the time the Amcor Board authorized the B9 investment.

» However when Visy and Amcor started to collude in 2000, the B9
project was curiously scrapped. B9 was not actually started until
2011, well after the end of the collusion in 2005. B9 only came
online in February 2013.
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Leapfrogging

Leapfrogging equilibrium
» Firms invest in alternating fashion and take turns in cost leadership

» Market price makes permanent downward shifts

“The Bertrand Investment Paradox”
» Should Bertrand competitors undertake cost-reducing investments?

» If both firms acquire state-of-art technology simultaneously, the
following Bertrand price competition leads to zero profits for each
firm

» Since both firms have access to cost reducing technology, does
either of them have any incentive to invest ex ante?
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ROAD MAP

1. Solving directional dynamic games (DDGs):

» Bertrand pricing and investment game
» Solving once: State recursion algorithm
» Solving for all MPE: Recursive lexicographical search (RLS) algorithm

2. Structural estimation of DDGs: nested MLE RLS
» s it even feasible computationally?

3. Monte Carlo to compare to exising estimators in dynamic games
(two-step CCP, NPL, EPL, MPEC)

» One equilibrium in the model and data
» Multiplicity of equilibria at true parameter
» Multiple equilibria in the data

@ Iskhakov, Rust and Schjerning, 2016, ReStud
[ lIskhakov, Rust and Schjerning, 2018, IER
E

This paper: estimation + Monte Carlo exercises



Dynamic Bertrand price competition

Directional stochastic dynamic game
» Two Bertrand competitors, n = 2, no entry or exit
» Discrete time, infinite horizon (t =1,2,...,00)
» Firms maximize expected discounted profits
» Each firm has two choices in each period:

1. Price for the product — simultaneous
2. Whether or not to buy the state of the art technology
» Simultaneous moves

» Alternating moves
Static Bertrand price competition in each period
» Continuum of consumers make static purchase decision
» No switching costs: buy from the lower price supplier
» Per period profits (¢; is the marginal cost)

0 if i > ¢
¢—c ifc<g

e = {
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Cost-reducing investments

State-of-the-art production cost ¢ process
» Initial value cg, lowest value 0: 0 < ¢ < ¢
» Discretized with n points
» Follows exogenous Markov process and only improves

» Markov transition probability 7(c;i1|ct)
7T(Ct+1|ct) =0 if Ct4+1 > Ct

State space of the problem
> State of the game: cost structure (¢1, &, ¢)
» State spaceis S = (c1,c,c) CR3 ¢c;>c, 0> ¢
» Actions are observable

» Private information EV/(1) i.i.d. shocks ne;; and ne; n
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State space and information structure

Common knowledge
> State of the game: cost structure (cy, ¢, ¢)
» State spaceis S = (c1,c,c) CR3 ;> c, 0> ¢
» Actions are observable

Private information

» In each period each firm incurs additive costs (benefits) from not
investing and investing ne; ; and 7e; y

> ¢;; and ¢ y are extreme value distributed, independent across
choice, time and firms

» 7 >0 is a scaling parameter

» Investment choice probabilities have logit form for n > 0
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Definition of Markov Perfect Equilibium

Definition (Markov perfect equilibrium (MPE))
MPE of Bertrand investment stochastic game is a pair of

> strategy profile o* = (07,03), and

» pair of value functions V/(s) = (Vl(s), Vg(s)), Vi:S—R,
such that

1. Bellman equations (below) are satisfied for each firm, and

2. strategies o7 and o3 constitute mutual best responses, and assign
positive probabilities only to the actions in the set of maximizers of

the Bellman equations.

@ Doraszelski, Escobar 2010, TE
“A theory of regular Markov perfect equilibria in dynamic stochastic games: Genericity,

stability, and purification.” for stochastic games with finite choice and state spaces
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Bellman equations, firm 1, simultaneous moves

V1(C1, Co, C, 61) = max [Vl(/7 cy, Co, C) + 7]61(/), V1(N, c1, Co, C) + 7761(N)]
vi(N,c1,6,¢) = nf(c, )+ BEVi(a,c,c, N)
vi(l,a1,¢,¢) = n(ca,e)—K(c)+ BEVi(a, e, c,!)

With extreme value shocks, the investment probability (CCP) is

exp{vi(/,c1, 2, ¢c)/n}
eXP{Vl(Ia C1, G, C)/TI} + eXp{Vl(N, 1, €2, C)/T]}

Pi(llc1, ¢, c) =

» There is a separate Bellman equation for player 2, with “outputs” V5
and Py, where Px(/|c1, ¢z, ) is firm 2's probability of investing in
state (c1, ¢, €).
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Bellman equations, firm 1, simultaneous moves

The expected values are given by

EVl(Clv ©,C, N) -

/ [PQ(Icl, ¢, c)Hi(c1, ¢, ¢’) + [1 = Pa(l|e, 2, €)]Ha(c1, c2, c’)] w(dc’|c)
0

EV1(C1, C, C, /) =

/ [ P>(I|c1, c2, c)Hi(c, c,c’) + [L — Pa(l|c1, ca, €)]Ha(c, cz,c’)} m(dc’|c)
0

Hi(c1, ¢, ¢) = nlog [exp (le(cl, C, c)/n) + exp (vll(cl7 o, c)/n)]

is the “smoothed max” or logsum function
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Discretized state space = a "quarter pyramid”
S={(a,e,c)laa>c o2>cce[0,3]}, n=4

(3,3,3)
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Transitions due to technological progress

As c decreases, the game falls through the layers of the pyramid
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Game dynamics: example

The game starts at the apex, as some point technology improves
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Game dynamics: example
Both firms buy new technology ¢ = 2 ~ (1, 2,¢) = (2,2,2)
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Game dynamics: example
State-of-the-art technology becomes ¢ =1 ~~ (c1,2,¢) =(2,2,1)
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Game dynamics: example

Firm 1 invests and becomes cost leader ~ (c1,c2,¢) = (1,2,1)
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Game dynamics: example
State-of-the-art technology becomes ¢ = 0 ~~ (c1, c2,¢) = (1,2,0)
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Game dynamics: example

Firm 2 leapfrogs firm 1 to become new cost leader ~» (c1, c2,¢) = (1,0,0)
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Game dynamics: example

A particular sequence of investment decisions along technological progress pass
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Transitions due to technological progress

As c decreases, the game falls through the layers of the pyramid
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Strategy-specific partial order on S

Strategy o1 of firm 1: invest at all interior points
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Strategy-specific partial order on S

Strategy o2 of firm 2: invest at all edge points




Strategy-specific partial order on S

Strategy o = (01,02) of both firms

A=A
Py
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Strategy independent partial order on §

Coarsest common refinement of partial orders induced by all strategies

2N
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Definition of the Dynamic Directional Games

Finite state Markovian stochastic game is a DDG if it holds:

1. Every feasible Markovian strategy o satisfies the no loop condition.

co—»(%ov

2. Every pair of feasible Markovian strategies o and ¢’ induce
consistent partial orders on the state space.

OIS
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DAG recursion to partition S into stages

Identify terminal states
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DAG recursion to partition S into stages

Remove terminal states

AN

/\\

?
L
/&N&

%

23/60



DAG recursion to partition S into stages

Identify terminal states
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DAG recursion to partition S into stages

Remove terminal states
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DAG recursion to partition S into stages

Identify terminal states
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DAG recursion to partition S into stages

Remove terminal states

N é.lll
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Total order on the set of stages
After running a topoligical sort algorithm on the DAG
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Subgames of DDG and continuation strategies

Subgames and continuation strategies
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State recursion algorithm
Backward induction on stages of DDG
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State recursion algorithm
Backward induction on stages of DDG
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State recursion algorithm
Backward induction on stages of DDG

~ ~S\\\l// T —

I Ve NR\ T & S I

25 /60



State recursion algorithm
Backward induction on stages of DDG
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State recursion algorithm
Backward induction on stages of DDG
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Examples of Directional Dynamic Games

Many games have state dynamic evolutions described by a DAGs

~ S10 (endgame states)

[§ Judd, Schmedders, Yeltekin (2012), IER
“Optimal rules for patent researchers”

@ Dube, Hitsch, Chintagunta (2010), Marketing Science
“Tipping and concentration in markets with indirect network effects”
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Tennis is a Directional Dynamic Game

[§ Anderson, Rosen, Rust, Wong (2024) JPE (forthcoming)
“Disequilibrium Play in Tennis”
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Multiplicity of stage equibiria

Number of equilibria in the higher stages depends on the selected equilibria

» State recursion proceeds conditional on equilibrium selection rule
» Multiplicity of stage equilibria < multiplicity
» Can systematically combine different stage equilibria

|
|
!
i
:
i
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Best response functions
Typically one or three stage equilibria, but may be 5

» Smooth best response function with n > 0

0.9
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Investment probability of firm 2, P 5

29 /60



Recursive Lexicographic Search Algorithm

Building blocks of RLS algorithm:

1. State recursion algorithm solves the game conditional on equilibrium
selection rule (ESR)

2. RLS algorithm efficiently cycles through all feasible ESRs

Challenge:
» Choice of a particular MPE for any stage game at any stage

» may alter the set and even the number of stage equilibria at earlier
stages

Solution: RLS = depth-first tree traversal (illustration coming)
» Root of the tree is one of the absorbing states
» Levels of the tree correspond to the state points
» Branching happens when stages have multiple equilibria
» MPE of the game is given by a path from root to a leaf
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Recursive Lexicographic Search (RLS) algorithm

Theorem (RLS theorem)

Assume there exists an algorithm that can find all MPE of every stage
game of the DDG, and that the number of these equilibria is finite in
every stage game.

Then the RLS algorithm finds all MPE of the DDG in a finite number of
steps, which equals the total number of MPE.

[@ Iskhakov, Rust and Schjerning, 2016, ReStud
“Recursive lexicographical search: Finding all markov perfect equilibria of
finite state directional dynamic games.”
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Theoretical results on Bertrand investment game

show analytically or by example/counter-example:

. Many types of endogenous coordination are supported as MPE:

> Leapfrogging (alternating investments)
» Preemption (investment by cost leader)
» Duplicative (simultaneous investments)

. The equilibria are generally inefficient due to over-investment

» Duplicative or excessively frequent investments
The (convex hull of the) set of the expected discounted equilibrium
payoffs at the initial (apex) state is:

> triangle with the vertices at the origin and the monopoly payoffs in

the simultaneous move game;

» proper subset thereof in the alternating move game.
Sufficient conditions for uniqueness of equilibrium:

» Stochastic or deterministic alternation of moves;

» Strictly monotone technological progress, m(ce+1|ct) =0, ceq1 > ¢

[§ Iskhakov, Rust and Schjerning (2018) International Economic Review
“The dynamics of Bertrand price competition with cost-reducing
investments."”
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Pay-offs: alternating vs simultaneous move games

Panel (b): Simultaneous move
28528484 equilibria, 16510 distinct pay—off points
Size: number of repetitions Color: efficiency

Panel (a): Non—monotonic tech. progress
17826 equilibria, 792 distinct pay—off points
Size: number of repetitions Color: efficiency
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ROAD MAP

1. Solving directional dynamic games (DDGs):

» Bertrand pricing and investment game
» Solving once: State recursion algorithm
» Solving for all MPE: Recursive lexicographical search (RLS) algorithm

2. Structural estimation of DDGs: nested MLE RLS
» s it even feasible computationally?

3. Monte Carlo to compare to exising estimators in dynamic games
(two-step CCP, NPL, EPL, MPEC)
» One equilibrium in the model and data
» Multiplicity of equilibria at true parameter
» Multiple equilibria in the data



Markov Perfect Equilibria

» Discrete-time infinite-horizon dynamic stochastic games with
discrete states and actions

» MPE is a pair of strategy profiles and value functions such that

V=wY(V,P,0) (Bellman equations)
P=vP(V, P,0) (CCPs = mutual best responces)

> W = (WY, WP) gives the structure of the model

» Denote the set of all equilibria in the model as

£(v,0) = {(P, V)’ \,g;ﬁ((\\j/ﬁg)) }

)

» Vision: Solve for all MPE equilibria for any 6
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Maximum Likelihood Estimation

» Data from M independent markets from T periods

Z= {5mt’)_<mt}m€/\/l,t67'

» Assume that only one equilibrium is played in the data
(we relax this assumption later — grouped fixed effects)

» For a given @ denote the choice probabities for player i at time t and
market m as P;(a™|x™*; 6)

(P(e), V(e)) cE(V,0): P(O) = {P,-(a,f"f|xmt; e)}

,m,t

» MLE estimator OML is given by

N M T

. 1 3
ML = | P,_ —imt —mt_9
’ aremg [(P(e),vr?ea)ésw,e) 2 og A3 |X™6)

i=1 m=1t=1
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MLE via Constrained Optimization Approach

vyvyyvyy

Idea: use discretized values of P and V as variables
Augmented log-likelihood function is
T
mt mt.,
L(Z,P,0) = M;;;mgp %™ )

The constrained optimization formulation of the ML estimation
problem is

A%
max £(Z, P,6) subject to J * WP(V’ P.6)
0,P,v P=Vv (\/7 P,@)

Math programming with equilibrium constraints (MPEC)
Does not rely as much on the structure of the problem

Much bigger computational problem

Implements the same MLE estimator (when it works)

[§ Su (2013); Egesdal, Lai and Su (2015)
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Estimation methods for dynamic stochastic games

» Two step (CCP) estimators
Fast, do not impose equilibrium constraints, finite sample bias

>
1. Estimate CCP — P
2. Method of moments e Minimal distance e Pseudo likelihood
@ Hotz, Miller (1993); Altug, Miller (1998); Pakes, Ostrovsky, and
Berry (2007); Pesendorfer, Schmidt-Dengler (2008)

» Nested pseudo-likelihood (NPL)
» Recursive two step pseudo-likelihood
» Bridges the gap between efficiency and tractability
» Unstable under multiplicity

[§ Aguirregabiria, Mira (2007); Aguirregabiria, Marcoux (2021)
» Efficient pseudo-likelihood (EPL)

» Incorporates Newton step in the NPL operator
» More robust to the stability and multiplicity of equilibria

[§ Dearing, Blevins (2024), ReStud (forthcoming)
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Overview of NRLS

Full solution nested fixed point MLE estimator
with computational enhancements to ensure tractability

>

>

Robust and computationally feasible(”) MLE estimator
for directional dynamic games (DDG)

Rely of full solution algorithm that provably computes all MPE
under certain regularity conditions

Employ discrete programming method (BnB) to maximize likelihood
function over the finite set of equilibria

Use non-parametric likelihood to refine BnB algorithm

Fully robust to multiplicity of MPE
Relax single-equilibrium-in-data assumption
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Nested Recursive Lexicographical Search (NRLS)

» Data from M independent markets from T periods

Z={a" XM} 1 Myeqt, T

> Let the set of all MPE equilibria be £ = {1,..., K(0)}

1. Outer loop
Maximization of the likelihood function w.r.t. to structural
parameters 6
oML — argmax £(Z,6
& [23:) ( ’ )

2. Inner loop
Maximization of the likelihood function w.r.t. equilibrium selection

_ k
L(Z,0) = e L(Z,0, Py)

Max of a function on a discrete set organized into RLS tree
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Likelihood over the state space

|

Given equilibrium k choice probabilities
Pk(a|x) = (Pf(alx,0), ..., Pf(alx,0)), likelihood is
M T N

L£(Z,0,Pk) = ZZng PX(3™|x™; 0)

m—lt 1i=1

Let ¢ index points in the state space, ¢ € {1,...,5}
¢ = 1 initial point, ¢« = S the terminal (absorbing) state

Denote n, the number of observations in state x, and n? the
number of observations of player i taking action a; at x,

M T M T
=Y > u{xm=x} =) > 1{a™ =a;,

m=1 t=1 m=1 t=1

Then equilibrium-specific likelihood can be computed as

L(Z,0,P) = MZZZn""IogP (alx.; 6)

=1 i=1 a

XM= x,}
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Data distribution over the state space
1000 markets, 5 time periods, init at apex of the pyramid

Distribution of data over the state space

B Firm 1 investmen counts (log) I Firm 2 investment counts (log)
I CCP firm 1 on [0,1] I CCP firm 2 on [0.1]

%

Total and investing counts (in logs)
15

10

10t = —
© ® o o4 © o ° ® N 4 ®m N o m & o o ® N 4 o o o8 o o8 N o o~ o o
S S 0 5 ® § 49 @ ® W a4 N & 4 9 4 o4 4 9 @A ®eoe AN NN A > e oo
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State space, (ic. icl, ic2)
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Branch and bound (BnB) method

Old method for solving integer programming problems

1. Form a tree of subdivisions of the set of admissible plans
—> RLS tree
2. Specify a bounding function representing the best attainable

objective on a given subset (branch)
— Partial likelihood function computed on the subset of states

N
Epart(zs)e, Vek) — ZZZ nf'. IOg P,k(alxue)

€S i=1 a

where 79 = {(a,x) : x € S C {1,...,S}} denotes data on S
> Monotonic decreasing in cardinality of S
(declines as more data is added)
» Equals to the full log-likelihood on the full state space when Z% = Z
(at the leafs of RLS tree)

3. Dismiss the subsets of the plans where the bound is below the
current best attained value of the objective

@ Land and Doig, 1960 Econometrica
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BnB on RLS tree, step 1

Partial loglikelihood = -3.2
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BnB on RLS tree, step 2

(@) pli=-4.8
/
(14)-(13)-(12)-(11)-(10) - (9] pu=-9.7
\
(9] pll=-5.1

42 /60



BnB on RLS tree, step 3

pll=-5.2
@f pll=-14.9
/ [8) pli=8.9

(14)-(x3)-(12)-(12)- (10} - (9] plI=-9.7
\
(9] pll=-5.1
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BnB on RLS tree, step 4

pll=-9.4
T pll=-11.2
/ [@) pli=-52
(9)- (8] pll=-14.9
\

pll=-8.9
(14)-(13)-(12)-(12)- (10)- (9] plI=-9.7

(9) pll=-5.1
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BnB on RLS tree, step 5

[6) pl=-9.5
[0)-(6) pi=-124
/ pll=-10.9
(8)-(7] pli=-11.2

\
pll=-5.2
@ : pll=-14.9

AT

(14)-(13)-(12)-(11)- (1) - (9] plI=-9.7

(9] pli=-5.1
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BnB on RLS tree, step 6

(6)-(8 pu=-0.7
(1) (6) pii=-124
/ pll=-10.9
(8)-(7) pli=-11.2

\
pll=-5.2
(9)-(8) pl=-14.9

AT

(14)-(13)-(12)-(11)- (1) - (9] plI=-9.7

(9] pli=-5.1
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BnB on RLS tree, step 7

,@" pll=-10.0
(1) (6) pii=-124
/ pll=-10.9
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BnB on RLS tree, step 8
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BnB on RLS tree, step 9
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BnB on RLS tree, step 10
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BnB on RLS tree, step 11
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BnB on RLS tree, step 12
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BnB on RLS tree, step 28
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BnB on RLS tree, step 29
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BnB on RLS tree, step 30
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BnB on RLS tree, step 31
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BnB on RLS tree, step 33
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BnB on RLS tree, step 34
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Non-parametric likelihood bounding

» Idea: augment the partial likelihood bounding function with
non-parametric likelihood computed on the “rest of the data”

» Parametric choice probabilities PX(a|x,; 6) — frequencies n? /n,

[non-par ZS Z Z Z na, |Og

eSS i=1 a
» Lron-Par(ZS) depends only on the counts from the data!
» Not hard to show algebraically that for any ZS (= Gibbs inequality)
Enon-par(ZS) > Lpart(ZS’ 9’ Pé() VS

» Therefore partial likelihood can be optimistically extrapolated by
empirical likelihood at any step ¢ of the RLS tree traversal

Epart(Z{S,S—l,...,r,}797 Pé() + ‘Cnon-par(Z{L—l,...,l})

» Augmented partial likelihood is much more powerful bound for BnB
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Non-parameteric likelihood bounding

14 (terminal state) on the left, « = 1 (initial state) on the right

S =

L

BnB plot: expanded branches of the equilibrium tree

Partial nonparametric likelihood ===+ bound

—— Partial likelihood of the maximal equilibirum
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BnB with non-parameteric likelihood bound

Greedy traversal + non-parameteric likelihood bound

BnB plot: expanded branches of the equilibrium tree

Partial nonparametric likelihood ==~ bound

—— Partial likelihood of the maximal equilibirum
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BnB with non-parameteric likelihood bound, larger sample

Non-parametric — parametric likelihood as N — co at true 6 = even less computation

BnB plot: expanded branches of the equilibrium tree

—— Partial likelihood of the maximal equilibirum —— Partial nonparametric likelihood =+~ bound
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Full enumeration RLS in larger sample

Comparing with the previous slide most of the computation is avoided!

BnB plot: expanded branches of the equilibrium tree

—— Partial likelihood of the maximal equilibirum —— Partial nonparametric likelihood =+~ bound
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BnB refinement with non-parametric likelihood

» For any amount of data the non-parametric likelihood is greater or
equal to the parametric likelihood algebraically

» BnB augmented with non-parameteric likelihood bound gives
sharper Bounding Rules — less computation

» Wih more data as M — o
» Non-parametric log-likelihood converges to the true partial likelihood

(assuming the model is well-specified and in the neighborhood of the true parameter)

» The width of the band between the blue lines in the plots decreases

— Even sharper Bounding Rules
— Even less computation
— Still delivering exact maximum

MLE for any sample size, but much easier to compute with more datal!
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ROAD MAP

1. Solving directional dynamic games (DDGs):

» Simple example: Bertrand pricing and investment game
> State recursion algorithm
> Recursive lexicographical search (RLS) algorithm

2. Structural estimation of DDGs using Nested RLS

» Branch-and-bound on RLS tree
» Non-parametric likelihood bounding

3. Monte Carlo: (Compare NRLS, two-step CCP, NPL, EPL, MPEC)
» One equilibrium in the model and data
» Multiplicity of equilibria at true parameter
» (Multiple equilibria in the data)



Monte Carlo simulations

A B
Single equilibrium in the model Multiple equilibria in the model
One equilibrium in the data Same equilibrium played the data
C
Implementation details: Multiple equilibria in the model
> Leapfrogging model with Multiple equilibria in the data:
N = 2 Bertrand competitors > Long panels, each market plays
deciding whether to invest in their own equilibrium
cost-reducing technology
(IRS, 2016) » Groups of markets play the

o same equilibrium
» ki parameter in investment

cost function
» M =1000, T =5

» All methods are initialized with
2-step CCP estimator
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Monte Carlo A: no multiplicity

Number of equilibria at true parameter: 1
Number of equilibria in the data: 1

2step NPL EPL MPEC-VP MPEC-P NRLS
True ky = 3.5 3.52786 3.49714 3.49488 3.49488 3.49486 3.49488
Bias 0.02786  -0.00286  -0.00512 -0.00512  -0.00514  -0.00512
MCSD 0.10037 0.06522 0.07042 0.07042 0.07078 0.07042
ave log-like -1.16661 -1.16144 -1.16143 -1.16143  -1.16139 -1.16143
log-likelihood -5833.07  -5807.21  -5807.16 -5807.16  -5806.95 -5807.16
log-like short - -0.050 -0.000 -0.000 -0.000 -0.000
KL divergence 0.03254 0.00021 0.00024 0.00024 0.00024 0.00024
||P — PO 0.11270 0.00469 0.00495 0.00495 0.00500 0.00495
[fw(P) — P|| 0.16185 0.0000 0.0000 0.0000 0.0000 0.0000
[[F(v) — v|| 0.87095 0.00000 0.00000 0.00000 0.00000 0.00000
Converged of 100 - 100 100 100 99 100

» Equilibrium conditions satisfied (except 2step)
» Nearly all MLE estimators identical to the last digit
» NPL and EPL estimators approach MLE
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Monte Carlo B, run 1: little multiplicity

Number of equilibria at true parameter: 3

Number of equilibria in the data: 1
Data generating equilibrium: stable

2step NPL EPL  MPEC-VP MPEC-P NRLS

True k1=7.5 7.55163 7.49844 7.49918 7.65318 7.35124 7.49919
Bias 0.05163 -0.00156 -0.00082 0.15318 -0.14876 -0.00081
MCSD 0.17875 0.06062 0.03413 0.99742 0.47136 0.03413
ave log-like -0.84779 -0.84425 -0.84421 -0.88682 -0.87541 -0.84421
log-likelihood -21194.86  -21106.33  -21105.13 -22170.40  -21885.37  -21105.13
log-like short - -1.206 -0.000 -1062.740 -776.809 -0.000
KL divergence 0.02557 0.00040 0.00013 0.23536 0.16051 0.00013
P — Pol| 0.11085 0.00490 0.00280 0.17466 0.20957 0.00280
W(P) — P|| 0.170940 0.000000 0.000000 0.000000 0.000000 0.000000
r(v) —v|| 1.189853 0.000000 0.000000 0.000000 0.000000 0.000001
N runs of 100 100 100 100 98 97 100

» MPEC convergence deteriorates

» Equilibrium conditions are satisfied, but estimators start to converge

to wrong equilibria

(as seen from KL divergence from the data generating equilibrium)
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Monte Carlo B, run 2: little multiplicity, unstable

Number of equilibria at true parameter: 3
Number of equilibria in the data: 1
Data generating equilibrium: unstable

2step NPL EPL  MPEC-VP MPEC-P NRLS

True k1=7.5 7.54238 7.39276 7.48044 7.73133 7.63100 7.50176
Bias 0.04238 -0.10724 -0.01956 0.23133 0.13100 0.00176
MCSD 0.17145 0.05608 0.15801 0.72988 0.89874 0.03820
ave log-like -0.86834 -0.89374 -0.86550 -0.88512 -0.90196 -0.86504
log-likelihood -21708.60  -22343.58 -21637.54 -22127.91  -22549.06 -21626.12
log-like short - -765.242 -11.413 -502.121 -920.643 -0.000
KL divergence 0.02271 0.15996 0.00257 0.11452 0.20182 0.00012
P — Pol| 0.09757 0.20709 0.00619 0.03860 0.02504 0.00307
W(P) — PJ| 0.160102 0.000000 0.000000 0.000000 0.000000 0.000000
r(v) —vl| 1.126738 0.000000 0.000000 0.000000 0.000000 0.000001
N runs of 100 100 18 100 99 98 100

» NPL estimator fails to converge
» Similar convergence issues for MPEC
» EPL estimator performs well

[§ Aguirregabiria, Marcoux (2021)
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Likelihood correspondence

Lines are costructed using symmetric KL-divergence
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Monte Carlo B: discontinuous likelihood

Number of equilibria at true parameter: 9
Number of equilibria in the data: 1
Data generating equilibrium: unstable, near “cliffs”

2step NPL EPL  MPEC-VP MPEC-P NRLS
True k1=3.5 3.49739 3.55144 3.64772 3.65943 3.67027 3.50212
Bias -0.00261 0.05144 0.14772 0.15943 0.17027 0.00212
MCSD 0.13999 0.07133 0.12900 0.12693 0.11583 0.03255
ave log-like -0.27494 -0.29474 -0.29528 -0.30330 -0.30257 -0.25086
log-likelihood -1374.721  -1473.695  -1476.425 -1516.503  -1512.847  -1254.320
log-like short - -219.375 -222.104 -270.999 -267.523 -0.000
KL divergence 0.01512 0.04889 0.04495 0.04102 0.04078 0.00016
||P — Pol] 0.62850 0.86124 0.83062 0.66562 0.65879 0.01610
[fw(P) — P|| 0.763764 0.000000 0.000000 0.000000 0.000000 0.000002
[T (v) — v]| 0.852850 0.000000 0.000000 0.000000 0.000000 0.000005
N runs of 100 100 100 100 28 27 100

» Equilibrium conditions are satisfied, but estimators converge to
wrong equilibria as seen from KL divergence from DGP equilibria

» Biased estimates by EPL, NPL and MPEC
(constraints are satisfied, yet low likelihood and high KL divergence)
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Likelihood correspondence

Lines are costructed using symmetric KL-divergence

Sample likelihood for different equilibria
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Equilibrium selection estimates

Distribution of KL-divergence to the DGP equilibrium, vertical lines represent other equilibria

ol

Histgrams of KL diversion to DGP equilibria, log scale
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Monte Carlo B: massive multiplicity

Number of equilibria at true parameter: 2455
Number of equilibria in the data: 1
Time to enumerate all equilibria (RLS) once: 10m 39s

1-NPL NPL EPL NRLS

True k1=3.75 3.70959 3.71272 3.78905 3.74241
Bias -0.04041 -0.03728 0.03905 -0.00759
MCSD 0.11089 0.06814 0.40716 0.03032
ave log-likelihood ~ -0.38681557  -0.37348793 -0.45256293  -0.35998461
log-likelihood -1934.078 -1867.440 -2262.815 -1799.923
log-like shortfall - -66.529 -467.607 -0.000
KL divergence Inf 14.07523  12231.59186 0.32429
P — Pol| 0.82204 0.65580 0.79241 0.07454
V(P) — PJ| 0.963574 0.000000 0.000000 0.000006
r(v) —vl| 7.020899 0.000000 0.000000 0.000008
N runs of 100 100 18 68 100
CPU time 0.159s 11.262s 4.013s 4.731s

» Severe convergence problems for NPL and EPL
> Poor eqb identification (low likelihood and high KL divergence)
» NRLS has comparable CPU time (much faster than full enumeration)
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Monte Carlo C, multiple equilibria in the data

» Assume that the same equilibrium is played in each market over time

» Grouped fixed-effects, groups defined by the equilibria played

1. Joint grouped fixed-effects estimation
» Estimate the partition of the markets into groups playing different
equilibria together with
» For each market compute maximum likelihood over all equilibria and
“assign” it to the relevant group (estimation+classification)
» Computationally very demanding: BnB market-by-market,
non-parametric refinement has no bite

2. Two-step grouped fixed-effects estimation

> Step 1: partition the markets based on some observable
characteristics (K-means clustering) (Outside of Monte Carlo)

> Step 2: estimate € allowing different equilibria in different groups

» Small additional computational cost for NRLS!

@ Bonhomme, Manresa (2015); Bonhomme, Lamadon, Manresa (2022)
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Monte Carlo C: multiple equilibria in the data

Number of equilibria at true parameter: 81
Number of equilibria in the data: 5
Number of unique equilibria in the data: 3

1-NPL NRLS
True k1=9.25 9.20991 9.25449
Bias -0.04009 0.00449
MCSD 0.15021 0.04109
ave log-likelihood -0.798223  -0.707174
log-likelihood -19955.57  -17679.36
log-like shortfall - 0.000
KL divergence 0.32943 0.00039 0.00039 0.00039 0.00040 0.00028
P — Po| 0.32787 0.00287 0.00287 0.00287 0.00252 0.00240
V(P) — PJ| 0.460870 0.000000  0.000000  0.000000  0.000000 0.000000
Bellman(V) — V|| 5.438776 0.000000  0.000000  0.000000  0.000000  0.000000
# converged of 100 100 100
CPU time, sec 0.023 20.695

» All 5 equilibria were identified correctly as seen from KL divergence
» The first three equilibria are the same in DGP, and have the same

KL and L1 divergence

» Similar results in runs with many more equilibria in the data
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Equilibrium selection estimates

Distribution of KL-divergence to the DGP equilibrium, vertical lines represent other equilibria

Histgrams of KL diversion to DGP equilibria, log scale
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Monte Carlo C, run 2: many more equilibria in the data

Number of equilibria at true parameter: 19,683
Number of equilibria in the data: 25

1-NPL EPL NRLS

True k1=9.5 9.12069 9.40900 9.49992
Bias 0.03918 -0.09100 -0.00008
MCSD 0.02864 0.05586 0.00414
ave log-likelihood -0.511188  -0.515356 -0.504482
log-likelihood -25559.42  -25767.79 -25224.10
log-like shortfall - -543.690 0.000
KL divergence 0.05753 0.05045 0.0 to 0.0001
P — Po| 0.18517 0.26430  0.00059 to 0.00572
V(P) — PJ| 0.186981 0.000000 0.0 for all
Bellman(V) — V|| 2.577006 0.000000 0.0 for all
# converged of 100 100 100 100
CPU time, sec 0.047 1.041 3m 9.4s

» All 25 equilibria were identified correctly

> Largest average KL divergence 10~% whereas the closest to DGP
equilibrium at true 6 has KL=10"2

» Largest error in choice probabilities across the state space 0.00572
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Equilibrium selection estimates

Distribution of KL-divergence to the DGP equilibrium, vertical lines represent other equilibria

Histgrams of KL diversion to DGP equilibria, log scale
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NRLS estimator for directional dynamic games

Complicated computational task involving maximization over the large

finite set of all MPE equilibria — branch-and-bound algorithm with
refined bounding rule

NRLS nested structure:

1.
2.

3.
4,

Each stage game — non-linear solver, specific to the model
Combining stage game solutions to full game MPEs —

State Recursion algorithm

Solving for all MPE equilibria — Recursive Lexicographic Search
Structural estimation — high-dimensional optimization algorithm

Performance of NRLS

>
>
>

Implementation of statistically efficient estimator (MLE)
Using BnB NRLS avoids full enumeration at no cost.

BnB augmented with non-parameteric likelihood bound gives
sharper Bounding Rules — less computation

Computationally tractable, better performance with more data
Fully robust to multiplicity of equilibria
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