
Solving and estimating discrete choice models

The Nested Fixed Point Algorithm (NFXP)
vs.

Mathematical Programming with Equilibrium Constraints (MPEC)

Fedor Iskhakov, University of New South Wales
Jinhyuk Lee, Ulsan National Institute of Science and Technology

John Rust, Georgetown University
Kyoungwon Seo, Korea Advanced Institute of Science and Techn.

Bertel Schjerning, University of Copenhagen

June 11th, 2015

1 / 76

Road Map
This Lecture
1. Dynamic Discrete Choice Problems, Infinite Horizon Case

I General Behavioral framework
I Structural Estimation by MPEC
I Structural Estimation by NFXP
I Example: Rust’s model
I Death to good old NFXP?

2. Maximum Likelihood Estimation of Discrete Markov Decision
Models by Sieve Approximations

I Approximation of Expected Value Function
I Another application of logit smooting: DP Mixed Logit
I Approximation errors: Implications for statistical inference

2 / 76

PART I

Dynamic Discrete Choice Problems, Infinite Horizon Case

3 / 76

MATLAB code

CODE: www.goo.gl/tFDzKx

(link will only be active today)

4 / 76

www.goo.gl/tFDzKx

Rust (Econometrica, 1987)

5 / 76

Su and Judd (Econometrica, 2012)

6 / 76

Death to NFXP?
Su and Judd (Econometrica, 2012)2228 C.-L. SU AND K. L. JUDD

TABLE II
NUMERICAL PERFORMANCE OF NFXP AND MPEC IN THE MONTE CARLO EXPERIMENTSa

Runs Converged CPU Time # of Major # of Func. # of Contraction
β Implementation (out of 1250 runs) (in sec.) Iter. Eval. Mapping Iter.

0.975 MPEC/AMPL 1240 0"13 12.8 17"6 –
MPEC/MATLAB 1247 7"90 53.0 62"0 –

NFXP 998 24"60 55.9 189"4 134,748
0.980 MPEC/AMPL 1236 0"15 14.5 21"8 –

MPEC/MATLAB 1241 8"10 57.4 70"6 –
NFXP 1000 27"90 55.0 183"8 162,505

0.985 MPEC/AMPL 1235 0"13 13.2 19"7 –
MPEC/MATLAB 1250 7"50 55.0 62"3 –

NFXP 952 43"20 61.7 227"3 265,827
0.990 MPEC/AMPL 1161 0"19 18.3 42"2 –

MPEC/MATLAB 1248 7"50 56.5 65"8 –
NFXP 935 70"10 66.9 253"8 452,347

0.995 MPEC/AMPL 965 0"14 13.4 21"3 –
MPEC/MATLAB 1246 7"90 59.6 70"7 –

NFXP 950 111"60 58.8 214"7 748,487

aFor each β, we use five starting points for each of the 250 replications. CPU time, number of major iterations,
number of function evaluations and number of contraction mapping iterations are the averages for each run.

Monte Carlo study demonstrates the uses of parametric bootstrap to compute
standard errors on structural parameters.

5. CONCLUSION

In this paper, we have proposed a new constrained optimization approach,
MPEC, for estimating structural econometrics models. We have illustrated
that the MPEC approach can be applied directly to maximum-likelihood es-
timation of single-agent dynamic discrete-choice models. Our approach can be
easily implemented using existing standard constrained optimization software.
Monte Carlo results confirmed that MPEC is significantly faster than NFXP,
particularly when the discount factor in the dynamic-programming model is
close to 1.

As shown by Dubé, Fox, and Su (2012), MPEC can also be applied to esti-
mate random-coefficients logit demand models. We believe that our approach
will be useful for estimating structural models in various contexts and applica-
tions. For future research, we plan to investigate the applicability of the MPEC
approach to estimate dynamic discrete-choice games studied in Aguirregabiria
and Mira (2007), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and
Berry (2007), Pesendorfer and Schmidt-Dengler (2008), and Arcidiacono and
Miller (2011).

7 / 76

Structural Estimation in Microeconomics
Single-Agent Dynamic Discrete Choice Models

I Rust (1987): Bus-Engine Replacement Problem
I Nested-Fixed Point Problem (NFXP)
I Su and Judd (2012): Constrained Optimization Approach

Random-Coefficients Logit Demand Models
I BLP (1995): Random-Coefficients Demand Estimation
I Nested-Fixed Point Problem (NFXP)
I Dube, Fox and Su (2012): Constrained Optimization Approach

Estimating Discrete-Choice Games of Incomplete Information
I Aguirregabiria and Mira (2007): NPL (Recursive 2-Step)
I Bajari, Benkard and Levin (2007): 2-Step
I Pakes, Ostrovsky and Berry (2007): 2-Step
I Pesendorfer and Schmidt-Dengler (2008): 2-Step
I Pesendorfer and Schmidt-Dengler (2010): comments on AM (2007)
I Kasahara and Shimotsu (2012): Modified NPL
I Su (2013), Egesdal, Lai and Su (2013): Constrained Optimization

8 / 76

Zurcher’s Bus Engine Replacement Problem

I Choice set: Each bus comes in for repair once a month and Zurcher
chooses between ordinary maintenance (dt = 0) and overhaul/engine
replacement (dt = 1)

I State variables: Harold Zurcher observes:
I xt : mileage at time t since last engine overhaul
I εt = [εt(dt = 0), εt(dt = 1)]: other state variable

I Utility function:

u(xt , d , θ1) + εt(dt) =

{
−RC − c(0, θ1) + εt(1) if dt = 1
−c(xt , θ1) + εt(0) if dt = 0 (1)

I State variables process xt (mileage since last replacement)

p(xt+1|xt , dt , θ2) =

{
g(xt+1 − 0, θ2) if dt = 1
g(xt+1 − xt , θ2) if dt = 0 (2)

I If engine is replaced, state of bus regenerates to xt = 0.

9 / 76

Structural Estimation
Data: (di,t , xi,t), t = 1, ...,Ti and i = 1, ..., n

Likelihood function

`fi (θ) =

Ti∑
t=2

log(P(di,t |xi,t , θ)) +

Ti∑
t=2

log (p(xi,t |xi,t−1, di,t−1, θ2))

where
P(d |x , θ) =

exp{u(x , d , θ1) + βEV θ(x , d)}∑
d′∈{0,1}{u(x , d ′, θ1) + βEV θ(x , d ′)}

and

EV θ(x , d) = Γθ(EV θ)(x , d)

=

∫
y

ln

 ∑
d′∈{0,1}

exp[u(y , d ′; θ1) + βEV θ(y , d ′)]

 p(dy |x , d , θ2)

10 / 76

Zurcher’s Bus Engine Replacement Problem
Discretize the mileage state space x into n grid points

X̂ = {x̂1, ..., x̂n} with x̂1 = 0

Mileage transition probability: for j = 1, ..., J

p(x ′|x̂k , d , θ2) =

{
Pr{x ′ = x̂k+j |θ2} = θ2j if d = 0
Pr{x ′ = x̂1+j |θ2} = θ2j if d = 1

Mileage in the next period x ′ can move up at most J grid points. J is
determined by the distribution of mileage.

Choice-specific expected value function for x̂ ∈ X̂

EVθ(x̂ , d) = Γ̂θ(EVθ)(x̂ , d)

=
J∑
j

ln

 ∑
d′∈D(y)

exp[u(x ′, d ′; θ1) + βEVθ(x ′, d ′)]

 p(x ′|x̂ , d , θ2)

11 / 76

Parameter Estimates, Rust (1987)

12 / 76

The Nested Fixed Point Algorithm
NFXP solves the unconstrained optimization problem

max
θ

L(θ,EV θ)

Outer loop (Hill-climbing algorithm):
I Likelihood function L(θ,EV θ) is maximized w.r.t. θ
I Quasi-Newton algorithm: Usually BHHH, BFGS or a combination.
I Each evaluation of L(θ,EV θ) requires solution of EV θ

Inner loop (fixed point algorithm):
The implicit function EV θ defined by EV θ = Γ(EV θ) is solved by:

I Successive Approximations (SA)
I Newton-Kantorovich (NK) Iterations

13 / 76

Mathematical Programming with Equilibrium Constraints
MPEC solves the constrained optimization problem

max
θ,EV

L(θ,EV) subject to EV = Γθ(EV)

using general-purpose constrained optimization solvers such as KNITRO

Su and Judd (Ecta 2012) considers two such implementations:

MPEC/AMPL:
I AMPL formulates problems and pass it to KNITRO.
I Automatic differentiation (Jacobian and Hessian)
I Sparsity patterns for Jacobian and Hessian

MPEC/MATLAB:
I User need to supply Jacobians, Hessian, and Sparsity Patterns
I Su and Judd do not supply analytical second order derivatives.
I ktrlink provides link between MATLAB and KNITRO solvers.

14 / 76

Sparsity patterns for MPEC
Two key factors in efficient implementations:

I Provide analytical-derivatives (huge improvement in speed)
I Exploit sparsity pattern in constraint Jacobian (huge saving in

memory requirement)

0 50 100 150

0

20

40

60

80

100

120

140

160

nz = 2264

Jacobian of constraints

0 50 100 150

0

20

40

60

80

100

120

140

160

180

nz = 3022

Hessian of likelihood

15 / 76

Sparsity patterns for MPEC
Number of gird points, N=10

Number of structural parameters, J=2
Number of parameters in mileage transition probability, J=4

16 / 76

Monte Carlo: Rust’s Table X - Group 1,2, 3

I Fixed point dimension: n = 175
I Maintenance cost function: c(x , θ1) = 0 : 001 ∗ θ1 ∗ x
I Mileage transition: stay or move up at most J = 4 grid points
I True parameter values:

I θ1 = 2 : 457
I RC = 11.726
I (θ21, θ22, θ23, θ24) = (0.0937, 0.4475, 0.4459, 0.0127)

I Solve for EV at the true parameter values
I Simulate 250 datasets of monthly data for 10 years and 50 buses

17 / 76

Death to NFXP?
Su and Judd (Econometrica, 2012)2228 C.-L. SU AND K. L. JUDD

TABLE II
NUMERICAL PERFORMANCE OF NFXP AND MPEC IN THE MONTE CARLO EXPERIMENTSa

Runs Converged CPU Time # of Major # of Func. # of Contraction
β Implementation (out of 1250 runs) (in sec.) Iter. Eval. Mapping Iter.

0.975 MPEC/AMPL 1240 0"13 12.8 17"6 –
MPEC/MATLAB 1247 7"90 53.0 62"0 –

NFXP 998 24"60 55.9 189"4 134,748
0.980 MPEC/AMPL 1236 0"15 14.5 21"8 –

MPEC/MATLAB 1241 8"10 57.4 70"6 –
NFXP 1000 27"90 55.0 183"8 162,505

0.985 MPEC/AMPL 1235 0"13 13.2 19"7 –
MPEC/MATLAB 1250 7"50 55.0 62"3 –

NFXP 952 43"20 61.7 227"3 265,827
0.990 MPEC/AMPL 1161 0"19 18.3 42"2 –

MPEC/MATLAB 1248 7"50 56.5 65"8 –
NFXP 935 70"10 66.9 253"8 452,347

0.995 MPEC/AMPL 965 0"14 13.4 21"3 –
MPEC/MATLAB 1246 7"90 59.6 70"7 –

NFXP 950 111"60 58.8 214"7 748,487

aFor each β, we use five starting points for each of the 250 replications. CPU time, number of major iterations,
number of function evaluations and number of contraction mapping iterations are the averages for each run.

Monte Carlo study demonstrates the uses of parametric bootstrap to compute
standard errors on structural parameters.

5. CONCLUSION

In this paper, we have proposed a new constrained optimization approach,
MPEC, for estimating structural econometrics models. We have illustrated
that the MPEC approach can be applied directly to maximum-likelihood es-
timation of single-agent dynamic discrete-choice models. Our approach can be
easily implemented using existing standard constrained optimization software.
Monte Carlo results confirmed that MPEC is significantly faster than NFXP,
particularly when the discount factor in the dynamic-programming model is
close to 1.

As shown by Dubé, Fox, and Su (2012), MPEC can also be applied to esti-
mate random-coefficients logit demand models. We believe that our approach
will be useful for estimating structural models in various contexts and applica-
tions. For future research, we plan to investigate the applicability of the MPEC
approach to estimate dynamic discrete-choice games studied in Aguirregabiria
and Mira (2007), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and
Berry (2007), Pesendorfer and Schmidt-Dengler (2008), and Arcidiacono and
Miller (2011).

18 / 76

How to do CPR

19 / 76

NFXP survival kit

Step 1: Read NFXP manual and print out NFXP pocket guide
Step 2: Solve for fixed point using Newton Iterations
Step 3: Recenter Bellman equation
Step 4: Provide analytical gradients of Bellman operator
Step 5: Provide analytical gradients of likelihood
Step 6: Use BHHH (outer product of gradients as hessian approx.)

If NFXP heartbeat is still weak:
Read NFXP pocket guide until help arrives!

20 / 76

STEP 1: NFXP documentation

Main references

Rust (1987): "Optimal Replacement of GMC Bus
Engines: An Empirical Model of Harold Zurcher"
Econometrica 55-5 999-1033.

Rust (2000): “Nested Fixed Point Algorithm
Documentation Manual: Version 6”
https:
//editorialexpress.com/jrust/nfxp.html

21 / 76

https://editorialexpress.com/jrust/nfxp.html
https://editorialexpress.com/jrust/nfxp.html

Nested Fixed Point Algorithm
NFXP Documentation Manual version 6, (Rust 2000, page 18):

Formally, one can view the nested fixed point algorithm as
solving the following constrained optimization problem:

max
θ,EV

L(θ,EV) subject to EV = Γθ(EV) (3)

Since the contraction mapping Γ always has a unique fixed
point, the constraint EV = Γθ(EV) implies that the fixed point
EV θ is an implicit function of θ. Thus, the constrained
optimization problem (3) reduces to the unconstrained
optimization problem

max
θ

L(θ,EV θ) (4)

where EV θ is the implicit function defined by EV θ = Γ(EV θ).

22 / 76

NFXP pocket guide

23 / 76

STEP 2: Newton-Kantorovich Iterations

I Problem: Find fixed point of the contraction mapping

EV = Γ(EV)

I Error bound on successive contraction iterations:
||EVk+1 − EV || ≤ β||EVk − EV ||
linear convergence → slow when β close to 1

I Newton-Kantorovich:
Solve [I − Γ](EVθ) = 0 using Newtons method
||EVk+1 − EV || ≤ A||EVk − EV ||2
quadratic convergence around fixed point, EV

24 / 76

STEP 2: Newton-Kantorovich Iterations

Newton-Kantorovich iteration:

EVk+1 = EVk − (I − Γ′)−1(I − Γ)(EVk)

where I is the identity operator on B, and 0 is the zero element of B (i.e.
the zero function). The nonlinear operator I − Γ has a Fréchet derivative
I − Γ′ which is a bounded linear operator on B with a bounded inverse.

The Fixed Point (poly) Algorithm
1. Successive contraction iterations

(until EV is in domain of attraction)
2. Newton-Kantorovich (until convergence)

25 / 76

STEP 2: Newton-Kantorovich Iterations
Successive Approximations, VERY Slow

0 2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Convergence of fixed point algorithm, beta=[0.9, 0.95, 0.99, 0.999, 0.999999]

Iteration count

T
ol

er
an

ce

26 / 76

STEP 2: Newton-Kantorovich Iterations, β = 0.9999
Successive Approximations, VERY Slow

1 Begin contraction iterations
2 j tol tol(j)/tol(j-1)
3 1 0.24310300 0.24310300
4 2 0.24307590 0.99988851
5 3 0.24304810 0.99988564
6 : : :
7 9998 0.08185935 0.99990000
8 9999 0.08185116 0.99990000
9 10000 0.08184298 0.99990000

10 Elapsed time: 1.44752 (seconds)
11

12 Begin Newton-Kantorovich iterations
13 nwt tol
14 1 9.09494702e-13
15 Elapsed time: 1.44843 (seconds)
16

17 Convergence achieved!

27 / 76

STEP 2: Newton-Kantorovich Iterations, β = 0.9999
Quadratic convergence!

1

2 Begin contraction iterations
3 j tol tol(j)/tol(j-1)
4 1 0.21854635 0.21854635
5 2 0.21852208 0.99988895
6 Elapsed time: 0.00056 (seconds)
7

8 Begin Newton-Kantorovich iterations
9 nwt tol

10 1 1.03744352e-02
11 2 4.40564315e-04
12 3 8.45941486e-07
13 4 3.63797881e-12
14 Elapsed time: 0.00326 (seconds)
15

16 Convergence achieved!

28 / 76

STEP 2: When to switch to Newton-Kantorovich
Observation:

I tolk = ‖EVk+1 − EVk‖ < β‖EVk − EV ‖
I tolk quickly slow down and declines very slowly for β close to 1
I Relative tolerance tolk+1/tolk approach β

When to switch to Newton-Kantorovich?
I Suppose that EV0 = EV + k .

(Initial EV0 equals fixed point EV plus an arbitrary constant)
I Another successive approximation does not solve this:

tol0 = ‖EV0 − Γ(EV0)‖ = ‖EV + k − Γ(EV + k)‖
= ‖EV + k − (EV + βk)‖ = (1− β)k

tol1 = ‖EV1 − Γ(EV1)‖ = ‖EV + βk − Γ(EV + βk)‖
= ‖EV + βk − (EV + β2k)‖ = β(1− β)k

tol1/tol0 = β

I Newton will immediately “strip away” the irrelevant constant k
I Switch to Newton whenever tol1/tol0 is sufficiently close to β

29 / 76

STEP 3: Recenter to ensure numerical stability
Logit formulas must be reentered.

Pi =
exp(Vi)∑

j∈D(y) exp(Vj)

=
exp(Vi − V0)∑

j∈D(y) exp(Vj − V0)

and “log-sum” must be recenteret too

EVθ =

∫
y

ln
∑

j′∈D(y)

exp(Vj)p(dy |x , d , θ2)

=

∫
y

V0 + ln
∑

j′∈D(y)

exp(Vj − V0)

 p(dy |x , d , θ2)

If V0 is chosen to be V0 = maxj Vj we can avoid numerical
instability due to overflow/underflow

30 / 76

STEP 3: MATLAB implementation of Bellman Operator

1 % Bellman operator
2 function [ev1, pk]=bellman(ev, P, c, mp)
3 VK=-c+mp.beta*ev; % Value off keep
4 VR=-mp.RC-c(1)+mp.beta*ev(1); % Value of replacing
5

6 % Recenter by Bellman by subtracting max(VK, VR)
7 maxV=max(VK, VR);
8 ev1=P*(maxV + log(exp(VK-maxV) + exp(VR-maxV)));
9

10 if nargout>1 % Choice probability
11 pk=1./(1+exp((VR-VK)));
12 end
13 end

31 / 76

STEP 4: Fréchet derivative of Bellman operator
Fréchet derivative

I For NK iteration we need Γ′

EVk+1 = EVk − (I − Γ′)−1(I − Γ)(EVk)

I In terms of its finite-dimensional approximation, Γ′θ
takes the form of an N × N matrix equal to the
partial derivatives of the N × 1 vector Γθ(EVθ) with
respect to the N × 1 vector EVθ

I Γ′θ is simply β times the transition probability matrix
for the controlled process {dt , xt}

I Two lines of code in MATLAB

32 / 76

STEP 4: MATLAB implementation of Fréchet derivative

1 % Frechet derivative of Bellman operator
2 function dev=dbellman(pk, P, mp)
3 tmp=P(:,2:mp.n).*repmat(pk(2:mp.n,1)',mp.n,1);
4 dev=(mp.beta*[1-(sum(tmp,2)) tmp]);
5 end % end of NFXP.dbellman

33 / 76

STEP 5: Provide analytical gradients of likelihood
Gradient similar to the gradient for the conventional logit

∂`1i (θ)/∂θ = [dit − P(dit |xit , θ)]× ∂(vrepl. − vkeep)/∂θ

I Only thing that differs is the inner derivative of the
choice specific value function that besides derivatives
of current utility also includes ∂EVθ/∂θ wrt. θ

I By the implicit function theorem we obtain

∂EVθ/∂θ = [I − Γ′θ]−1∂Γ/∂θ′

I By-product of the N-K algorithm: [I − Γ′θ]−1

34 / 76

STEP 5: MATLAB implementation of the likelihood

1 % Update u, du and P evaluated in grid points
2 dc=0.001*mp.grid;
3 cost=mp.c*0.001*mp.grid;
4 if numel(theta)>2 % if full MLE
5 P = nfxp.statetransition(mp.p, mp.n);
6 end
7

8 % Solve model
9 [ev0, pk, F]=nfxp.solve(ev0, P, cost, mp, options);

10

11 % Evaluate likelihood function
12 lp=pk(data.x); % probability of keeping at x
13

14 % log likelihood regarding replacement choice
15 logl=log(lp.*(1-data.d)+(1-lp).*(data.d));
16

17 % add on log like for mileage process
18 if numel(theta)>2
19 p=[mp.p; 1-sum(mp.p)];
20 n_p=numel(p)-1;
21 logl=logl + log(p(1+ data.dx1));
22 end

35 / 76

STEP 5: MATLAB implementation of scores

1 % step 1: compute derivative of contraction operator wrt. parameters
2 dtdmp(:, 1)=P*pk-1; % Derivative wrt RC
3 dtdmp(:, 2)=-(P*dc).*pk; % Derivative wrt c
4

5 % step 2: compute derivative of ev wrt. parameters
6 devdmp=F\dtdmp; % F=I-Gamma' is by-product of NK-iteration
7

8 % step 3: compute derivative of log-likelihood wrt. parameters
9 score=bsxfun(@times, (lp- 1 + data.d), ...

10 [-ones(N,1) dc(data.x,:)] + (devdmp(ones(N,1),:)-devdmp(data.x,:)) ...
11);

36 / 76

STEP 6: BHHH

I Recall Newton-Raphson

θg+1 = θg − λ (ΣiHi (θg))−1 Σi si (θg)

I Berndt, Hall, Hall, and Hausman, (1974):
Use outer product of scores as approx. to Hessian

θg+1 = θg + λ (Σi si s
′
i)
−1

Σi si

I Why is this valid? Information identity:

−E [Hi (θ)] = E
[
si (θ) si (θ)′

]
(only valid for MLE and CMLE)

37 / 76

STEP 6: BHHH
Some times linesearch may not help Newtons Method

−1 −0.5 0 0.5 1 1.5 2
−10.4

−10.3

−10.2

−10.1

−10

−9.9

−9.8

−9.7

−9.6

−9.5

−9.4
Non−concave likelihood

θ

θ

Concave region:

Newton−Raphson moves
in the same
direction of the gradient

NR moves UPHILL

Convex region:

Newton−Raphson moves
in the oposite
direction of the gradient

NR moves DOWNHILL
(Wrong, wrong, way)

BHHH: Still good

38 / 76

STEP 6: BHHH
Advantages

I Σi si s
′
i is always positive definite

I.e. it always moves uphill for λ small enough
I Does not rely on second order derivatives

(which are complicated even for this simple model) .

Disadvantages
I Only a good approximation

I At the true parameters
I for large N
I for well specified models (in principle only valid for MLE)

I Only superlinear convergent - not quadratic
We can always use BHHH for first iterations and the switch to BFGS to
update to get an even more accurate approximation to the hessian matrix
as the iterations start to converge.

39 / 76

STEP 6: BHHH

“The road ahead will be long. Our climb will be steep. We may not get
there in one year or even in one term. But, America, I have never been
more hopeful than I am tonight that we will get there. I promise you, we
as a people will get there.” (Barack Obama, Nov. 2008)

40 / 76

Convergence!
β=0.9999

1 ---
2 *** Convergence Achieved

3 ---
4 _
5 \`\
6 |= |
7 /- ;.---.
8 _ __.' (____)
9 ` (_____)

10 _' ._ .' (____)
11 ` (___)
12 --`'------'`
13 Number of iterations: 9
14 grad*direc 0.00003
15 Log-likelihood -276.74524
16

17 Param. Estimates s.e. t-stat
18 ---
19 RC 11.1525 0.9167 12.1655
20 c 2.3298 0.3288 7.0856
21 ---
22

23 Time to convergence is 0 min and 0.07 seconds
41 / 76

MPEC versus NFXP-NK: sample size 6,000

Converged CPU Time # of Major # of Func. # of Bellm. # of N-K

β (out of 1250) (in sec.) Iter. Eval. Iter. Iter.

MPEC-Matlab
0.975 1247 1.677 60.9 69.9
0.985 1249 1.648 62.9 70.1
0.995 1249 1.783 67.4 74.0
0.999 1249 1.849 72.2 78.4
0.9995 1250 1.967 74.8 81.5
0.9999 1248 2.117 79.7 87.5

MPEC-AMPL
0.975 1246 0.054 9.3 12.1
0.985 1217 0.078 16.1 44.1
0.995 1206 0.080 17.4 49.3
0.999 1248 0.055 9.9 12.6
0.9995 1250 0.056 9.9 11.2
0.9999 1249 0.060 11.1 13.1

NFXP-NK
0.975 1250 0.068 11.4 13.9 155.7 51.3
0.985 1250 0.066 10.5 12.9 146.7 50.9
0.995 1250 0.069 9.9 12.6 145.5 55.1
0.999 1250 0.069 9.4 12.5 141.9 57.1
0.9995 1250 0.078 9.4 12.5 142.6 57.5
0.9999 1250 0.070 9.4 12.6 142.4 57.7

42 / 76

MPEC versus NFXP-NK: sample size 60,000

Converged CPU Time # of Major # of Func. # of Bellm. # of N-K

β (out of 1250) (in sec.) Iter. Eval. Iter. Iter.

MPEC-AMPL
0.975 1247 0.53 9.2 11.7
0.985 1226 0.76 13.9 32.6
0.995 1219 0.74 14.2 30.7
0.999 1249 0.56 9.5 11.1
0.9995 1250 0.59 9.9 11.2
0.9999 1250 0.63 11.0 12.7

NFXP-NK
0.975 1250 0.15 8.2 11.3 113.7 43.7
0.985 1250 0.16 8.4 11.4 124.1 46.2
0.995 1250 0.16 9.4 12.1 133.6 52.7
0.999 1250 0.17 9.5 12.2 133.6 55.2
0.9995 1250 0.17 9.5 12.2 132.3 55.2
0.9999 1250 0.17 9.5 12.2 131.7 55.4

43 / 76

CPU is linear sample size

0 2 4 6 8 10 12

x 10
5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample size

c
p
u
 t
im

e
 p

e
r

m
a
jo

r
it
e
ra

ti
o
n
 (

s
e
c
o
n
d
s
)

MPEC−AMPL

NFXP−NK

TNFXP = 0.001+ 0.13x (R2 = 0.991), TMPEC = −0.025+ 1.02x (R2 = 0.988).

44 / 76

CPU is linear sample size

0 2 4 6 8 10 12

x 10
5

−10

0

10

20

30

40

50

60

Sample size

to
ta

l
c
p
u
 t
im

e
 (

s
e
c
o
n
d
s
)

MPEC−AMPL

NFXP−NK

TNFXP = 0.129+ 1.07x (R2 = 0.926) , TMPEC = −1.760+ 17.51x (R2 = 0.554).

45 / 76

Summary of findings
Su and Judd (Econometrica, 2012) used an inefficient version of NFXP

I that solely relies on the method of successive approximations to
solve the fixed point problem.

Using the efficient version of NFXP proposed by Rust (1987) we find:
I MPEC and NFXP-NK are similar in performance when the sample

size is relatively small.
I In problems with large sample sizes, NFXP-NK outperforms MPEC

by a significant margin.
I NFXP does not slow down as β → 1
I It is non-trivial to compute standard error using MPEC, whereas

they are a natural by-product of NFXP.

If the Hessian and the Jacobian fully utilize their special structure:
I MPEC subject to curse of dimensionality in the number of gridpoints

(AMPL implementation does not have this problem).

46 / 76

Patient still alive

47 / 76

Another reference

Iskhakov, Lee, Seo, Rust and Schjerning (2015): "Constrained
Optimization Approaches to Estimation of Structural Models:
Comment"
http://bschjerning.com/papers/nfxp_mpec_comment.pdf

48 / 76

http://bschjerning.com/papers/nfxp_mpec_comment.pdf

PART II

Maximum Likelihood Estimation of Discrete Markov Decision Models by
Sieve Approximations

with Dennis Kristensen (UCL) and Patrick Mogensen (U. Copenhagen)

49 / 76

Approximation

I Most available solution algorithms and estimation procedures make
use of numerical approximations in many dimensions:
1. Value/Policy function
2. Expectation operator in Bellman equation
3. Integrals in choice probabilities and likelihood function

I Various approximations are employed such as
1. Discretization (uniform grids, random grids, low discrepancy grids,

etc.)
2. Parametric approximations (polynomials, splines, wavelets, neural

networks, etc.)
3. Quadrature/Simulation (MCMC, importance sampling, particle

filtering, etc.)

50 / 76

Outline part II

1. Estimation and Solution Method
I Augmentation of model
I Approximation of value function
I Approximation of likelihood

2. Theory:
I Error bounds on value function and MLE

3. Numerical performance
4. Conclusion

51 / 76

The General Problem
Bellman equation

Vθ(z) = max
d∈D(z)

{uθ1(z , d) + β

∫
Vθ(z ′)pθp (z ′|z , d)dz ′}

uθ1 and pθp : known up to a set of parameters, θ1 and θp
I The agent’s problem: Maximize expected sum of current and

future discounted utilities
I d : Discrete control variable, d ∈ D(z) = {1, 2, .., J}.
I z : Current state, fully observed by agent
I z ′ : Future state; possibly continuous and subject to uncertainty

I The agents beliefs about z′:
I Obeys a (controlled) Markov transition probability pθp (zt+1|zt , dt)

I Model solution, Vθ(z)
I Find the fixed point for the Bellman equation
I Vθ(z) can be a very high dimensional function

52 / 76

MLE of Markov Decision Models

I Econometric problem: Given observations of n individual agents
over T time periods:

(di,t , xi,t), t = 1, ...,T and i = 1, ..., n,

we wish to estimate the underlying Markov decision model.
I di,t : individual i ’s discrete choice at time t.
I xi,t : sub-component of individual i ’s state vector zi,t .
I zt = (xt , εt) where εt is a set of unobservables.

I MLE:

θ̂ = argmax
θ
`n(θ), `n(θ) =

n∑
i=1

log p(x i , d i ; θ),

where x i = (xi,1, ..., , xi,Ti), d i = (di,1, ..., , di,Ti) and log p(x i , d i ; θ)
is the log-likelihood of individual i .

I Numerical evaluation of model and MLE: Requires
(approximate) computation of value function and likelihood.

53 / 76

Augmentation of Model
To facilitate implementation, we augment the model.

I Let ηt = (ηt(1), ..., ηt(J)) be a extreme value shock which is i.i.d.
over alternatives and time, and independent of {zt}.

I Transition density in augmented model:

pθp,λ(zt+1, ηt+1|zt , ηt , dt) = pθp (zt+1|zt , dt)fλ(ηt+1),

where fλ(η) := f (η/λ)/λ with f (η) being extreme value density and
λ > 0 scale parameter.

I Value function in augmented model:

vθ,λ(zt) = max
dt∈D
{uθ1(zt) + λη(dt) + βEVθ,λ(zt , dt)},

where EVθ,λ(zt , dt) is the expected value function,

EVθ,λ(zt , dt) :=

∫
Z

∫
RJ

vθ,λ(zt+1)pθp (zt+1|zt , dt)fλ(ηt+1)dηt+1dzt+1.

54 / 76

Augmentation of model with extreme value errors

55 / 76

Augmentation of Model

vθ,λ(zt) = max
dt∈D
{uθ1(zt) + λη(dt) + βEVθ,λ(zt , dt)},

I The addition of ηt to the model works as a smoothing device. It
facilitates computation of the (expected) value function and
likelihood.

I A similar idea have been used in the estimation of static discrete
choice models; see e.g. McFadden (1989) and McFadden and Train
(2003).

I One can think of the extreme value density fλ(η) as a kernel
smoother with λ > 0 playing the role of a bandwidth.

I We fix λ = λn at a (small) value for a given sample size n. As
λ→ 0 as →∞, augmented model and MLE is asymptotically
equivalent to the original ones.

56 / 76

Sieve Approximation of Value Function

I Bellman operator: The augmented model falls within the
framework of Rust (1988). Thus, the expected value function solves
a fixed point problem:

EVθ,λ(z , d) = Γθ,λ(EVθ,λ)(z , d), (5)

where Γθ,λ : V 7→ V is the so-called Bellman operator.
I Since fλ(η) is an extreme value density Γθ,λ can be written as:

Γθ,λ(EV)(z , d)

=
∫
Z log

[∑
j∈D exp[

uθ1 (z
′,j)+βEV (z′,j)

λ]
]
pθp (z ′|z , d)dz ′.

I The fixed-point problem is an infinite-dimensional problem and so in
general numerically infeasible.

57 / 76

Sieve Approximation of Value Function

I Suppose that the expected value function EVθ,λ(z , d) can be
approximated by by a set of basis functions,

EVθ,λ(z , d) ' BK (z)′γ(d), γ(d) ∈ RK .

I Here, BK (z) = (b1(z), .., bK (z)) is a set of K basis functions chosen
by the researcher and γ(d) is set a coefficients that uniquely
characterizes the expected value function

I For example, we can choose BK (z) as polynomials, such that
BK (z) = (1, z , z2, .., zK−1) or Chebyshev polynomials

I As K increases the approximation gets more flexible.

58 / 76

Sieve Approximation of Value Function
Approximate EVθ,λ by combining simulations and sieve methods.

Simulate Bellman operator: With Z
(r)
θ (z , d) ∼ pθp (z ′|z , d),

Γ̂θ,λ(EV)(z , d) =

1
R1

R1∑
r=1

log

∑
j∈D

exp[
uθ1(Z

(r)
θ (z , d), j) + βEV (Z

(r)
θ (z , d), j)

λ
]


Approximate EVθ,λ by ÊV θ,λ(z , d) = BK (z)′γ̂θ,λ(d) where γ̂θ,λ solves
the approximate fixed-point problem:

γ̂θ,λ = arg min
γ∈RJK

J∑
d=1

R2∑
r=1

[Γ̂θ,λ(B ′γ)(Z̃ (r), d)− B(Z̃ (r))′γ(d)]2,

for some (random) grid Z̃ (r), r = 1, ...,R2.

59 / 76

Sieve Approximation of Value Function

I The above least-squares problem can be solved iteratively:

γ̂
[i]
θ,λ(d) = [

R2∑
r=1

BK (Z̃ (r))BK (Z̃ (r))′]−1

×
R2∑
r=1

BK (Z̃ (r))Γ̂θ,λ(B ′γ̂
[i−1]
θ,λ)(Z̃ (r), d)

I This is a standard series regression estimator as used in
nonparametric econometrics (Newey, 1997).

I Can be combined with Newton-Kantorivich iterations as mentioned
above.

60 / 76

Approximation of Likelihood Function

I Conditional choice probability:

Pθ,λ(d |x , ε) =
exp[{uθ1(x , ε, d) + βEVθ,λ(x , ε, d)}/λ]∑
j∈D exp[{uθ1(x , ε, j) + βEVθ,λ(x , ε, j)}/λ]

.

I Thus, the likelihood of observables is given as

pλ(x , d ; θ) =

∫
ET

pλ(x , d , ε; θ)dεi ,

where

pλ(x , d , ε; θ)

=
T∏
t=1

Pθ,λ(dt |xt , εt)× pθp (xt , εt |xt−1, εt−1, dt−1).

61 / 76

Approximation of Likelihood Function

I Given the sieve approximator V̂θ,λ, draw ε(s) ∼ g(ε) from some
density g(ε) with support ET and compute

p̂λ(x , d ; θ) =
1
S

S∑
s=1

p̂λ(x , d , ε(s); θ)

g(ε(s))
,

where p̂λ(x , d , ε(s); θ) is evaluated using ÊV θ,λ.
I Computation can be sped up using more advanced simulators such

as MCMC (Norets, 2009) or particle filtering (Brownlees, Kristensen
and Shin, 2011).

62 / 76

Approximation error?
What are the implications for statistical inference when
approximating the value functions, Bellman operator,
conditional choice probabilities and the likelihood function?

63 / 76

Theory: Value Function Approximation

I Suppose ∃γθ,λ : ||B ′Kγθ,λ − EVθ,λ||∞ = O(K−α) for some α > 0.
I For example: If z 7→ EVθ,λ(z , d) is s times differential and BK (z) is

chosen as polynomials, then α = s/ dim(z).
I Also define ζ(K) := ||BK ||∞. For example, with polynomials,
ζ(K) = O(K 1+2 dim(z)).

Theorem (1)
Under regularity conditions,

||ÊV θ,λ − EVθ,λ||∞ = OP(ζ(K)K−α) + OP(ζ(K)K 1/2/
√
R1R2)

= approximation bias + simulation noise,

where R1 = #simulations and R2 = #random grid points.

64 / 76

Theory: Value Function Approximation

||ÊV θ,λ − EVθ,λ||∞ = OP(ζ(K)K−α) + OP(ζ(K)K 1/2/
√
R1R2),

where R1 = #simulations and R2 = #random grid points.

I For fixed R1, this rate is identical to the one for nonparametric series
regression estimators (Newey, 1997, Theorem 1).

I Bias: α = s/ dim(z). Thus, the smoother EVθ,λ(z , d) is the better
is the rate. On the other hand, the larger dim(z) is the larger K has
to be chosen.

I Parametric rate is attainable: Choosing K = R
1/{2(1+2 dim(z)−α)}
2

and R1 = Kζ2(K),

||ÊV θ,λ − EVθ,λ||∞ = OP(1/
√
R2).

65 / 76

Theory: Simulated MLE

Theorem (3)
Under regularity conditions, the simulated MLE, θ̂approx, satisfies:

‖θ̂approx − θ̂‖
= OP(ζ(K)K−α) + {OP(ζ(K)K 1/2/

√
R1R2) + OP(S−1/2)}

= bias + variance,

where θ̂ is the exact MLE, R1 = #simulations used for Bellman operator,
R2 = #random grid points, and S = #simulations used to compute
likelihood.

I The approximate MLE inherits the error of the value function.

66 / 76

More of Harold Zurcher
Decisions: d ∈ {0, 1} with d = 1 if engine replaced, and d = 0
otherwise, and x being elapsed millage.

Utiltiy

u(xt , d , θ1) + εt(dt) =

{
−RC − c(0, θ1) + εt(1) if dt = 1
−c(xt , θ1) + εt(0) if dt = 0 (6)

where c(xt) = c
√
xt maintenance/operating costs

States:
I xt follows regenerating random walk
I ε is extreme value.

Sieve Approximation: Chebyshev polynomials with K = m nodes are
used to approximate value function.

I Where approximate "exact" solution and MLE with R = 5, 000
simulations and m = 50 (49 degree Chebyshev polynomial).

I Compare this with approximate MLE with smaller R and m.
67 / 76

Numerical Performance - Choice Probabilities
TABLE 1

APPROXIMATION ERROR IN CONDITIONAL CHOICE PROBABILITIES
ALTERNATIVE APPROXIMATIONS

10 20 50 100 5000
2 6.31 6.31 6.31 6.31 6.31
4 1.26 1.16 1.20 1.20 1.17
6 0.16 0.10 0.09 0.09 0.10
8 0.17 0.13 0.11 0.11 0.13
10 0.07 0.03 0.01 0.01 0.02
50 0.05 0.00 0.03 0.02 0.00

10 20 50 100 5000
2 3.87 3.87 3.87 3.87 3.87
4 1.19 0.96 0.95 0.96 0.95
6 0.34 0.10 0.16 0.16 0.11
8 0.22 0.04 0.07 0.07 0.03
10 0.23 0.01 0.06 0.07 0.02
50 0.23 0.01 0.05 0.05 0.00

Based on ML estimates for R=5000 and m=50

Based on ML estimates for alternative approximationsNumber of
nodes, m

Note: All figures are measured in percentage points. Approximation error is measured as the

maximum absolute deviation between the approximated choice probability and the “exact” choice
probability. The “exact” solution was based on R=5000, and m=50. In the top panel, the choice
probabilities were based on ML estimates based on using the alternative approximations. In lower
panel, parameter estimates are held fixed at the ML estimates for the exact solution. In both cases, the
choice probabilities were based on an approximation over the interval [0;500], and evaluated at the
range of the state variable in a fine uniformly distributed grid (10000 points). The range of the
observed state variable, xt is [0;387]

68 / 76

Numerical Performance - Bias in MLE

TABLE 2
BIAS IN ML ESTIMATES FOR ALTERNATIVE APPROXIMATIONS

RUST’S ENGINE REPLACEMENT MODEL
COST FUNCTION: xc= C(x)

R 10 20 5000 10 20 5000
2 -3.59 -3.59 -3.59 3.83 3.86 3.86

(0.58) (0.58) (0.58) (8.06) (8.07) (8.07)

4 0.70 0.64 0.64 0.38 0.75 0.73
(1.73) (1.72) (1.72) (3.84) (3.95) (3.94)

6 0.05 -0.02 -0.02 -0.19 -0.04 -0.05
(1.60) (1.57) (1.57) (3.86) (3.90) (3.90)

8 0.09 0.03 0.03 -0.11 0.05 0.05
(1.60) (1.58) (1.58) (3.84) (3.90) (3.89)

10 0.06 0.00 0.00 -0.16 0.00 -0.01
(1.59) (1.57) (1.57) (3.83) (3.88) (3.87)

50 0.06 0.00 0.00 -0.16 0.01 0.00
(1.59) (1.56) (1.56) (3.81) (3.85) (3.85)

Paramter estimate ("exact" solution) 11.14 16.49

Engine replacement costs, RCNumber of
nodes, m

Cost function parameter, c

Note: The table presents the bias in the structural estimates induced by approximation error.

Bias is measured as the difference between the partial ML estimates using an approximated and
the “exact” solution. The “exact” solution was based on R=5000 and n=50.

69 / 76

Numerical Performance - Likelihood Function

TABLE 3
LIKELIHOOD RATIO

ALTERNATIVE APPROXIMATIONS AGAINST “EXACT” SOLUTION

10 20 50 100 5000
2 -7.10 -7.10 -7.10 -7.10 -7.10
4 1.04 0.99 1.01 1.01 0.99
6 -0.14 -0.18 -0.17 -0.17 -0.18
8 0.09 0.05 0.06 0.06 0.05
10 0.03 -0.01 0.00 0.00 -0.01
50 0.04 0.00 0.01 0.01 0.00

Likelihood ("exact" solution) -298.57

Based on ML estimates for alternative approximationsNumber of
nodes, m

Note: The table presents the log-likelihood value under alternative levels of approximation,

differenced against the “exact” solution. The “exact” solution were based on, R=5000, and
n=50.

70 / 76

Consequences of discretizing the data

TABLE 4
BIAS AND APPROXIMATION ERROR DUE TO DISCRETIZATION

RUST’S ENGINE REPLACEMENT MODEL
COST FUNCTION: xc= C(x)

Number of
grid points c RC LR x t (m) x t (m)-x t-1 (m) dx t (m)

2 -10.55 -4.21 -29.85 25.55 -1.85 327.43
(1.02) (0.36) (62.26) (18.18) (37.83)

4 -5.26 -1.99 -3.34 5.84 -1.01 162.05
(2.57) (1.14) (32.30) (15.94) (18.66)

6 -4.68 -1.67 -4.38 2.89 -0.66 106.93
(2.33) (1.03) (21.34) (13.81) (12.28)

8 -3.55 -1.08 -2.27 1.55 -0.53 79.37
(2.93) (1.33) (16.04) (12.16) (9.11)

10 -2.46 -0.68 -0.32 0.94 -0.34 62.83
(2.98) (1.32) (13.01) (11.11) (7.21)

25 -0.90 -0.11 -0.23 0.20 -0.12 23.14
(3.57) (1.54) (5.26) (6.75) (2.80)

50 -0.18 0.06 0.17 0.07 -0.04 9.92
(3.77) (1.59) (2.62) (4.10) (1.59)

75 0.10 0.10 0.35 0.02 -0.02 5.60
(3.87) (1.61) (1.74) (2.64) (1.35)

90 0.06 0.07 0.29 0.04 -0.02 4.59
(3.85) (1.59) (1.45) (2.05) (1.37)

100 0.00 0.00 0.03 0.03 -0.01 4.27
(3.85) (1.59) (0.26) (0.36) (0.27)

Likelihood
Continuous 16.39 11.14 -298.56 115.91 3.32 3.32

data (3.83) (1.57) (84.77) (1.42) (1.42)

Parameter Estimates
(Standard error)

Bias
(Standard error)

Mean approx. error
(Standard deviation of approx. error)

Mean of variable
(Standard deviation of variable)

Note: Bias is measured as the difference between parameter estimates, based on discretized and

continuous data, respectively. The estimated standard errors of the parameter estimates are given in
parenthesis. The likelihood ratio test statistic (LR) measures the difference in likelihood between models
estimated on discretized and continuous data respectively. When estimating the parameters, the model was
solved using 50 Chebyshev nodes and 5000 Monte Carlo draws. Approximation error is measured as the
difference between the original continuous data and the discretized data. The lower part of the table
presents parameter estimates and likelihood value for the model based on continuous data along with mean
and standard deviation for levels and differences of the variables xt and dxt. The grid points were uniformly
distributed between 0 and 450. The range of the data, xt, is [0;387]

71 / 76

CPU time

FIGURE 1
CPU TIME USED TO SOLVE MODEL

0.005
0.047

4.56

487.39

10967.59

0.001

0.01
0.1

1

10
100

1000

10000
100000

1000000

1 2 3 4 5
Number of state variables

C
PU

 s
ec

on
ds

(lo
g

sc
al

e)

Note: When the models were solved, I used 100 Halton Draws to calculate integrals and 6

Chebyshev coefficients in each dimension of the state space for the models with up to 4 state
variables. For the model with 5 state variables, I used only 5 Cebyshev coefficient in each
dimension of the state space. The models were solved using a IMB ThinkPad T41 with a 1.6
GHz Pentium M processor and 2 GB RAM.

72 / 76

Monte Carlo - Unobserved heterogeneity
Rust’s model with random coefficients

Experimental design:
I Replacement costs, RCi

I bus specific and randomly distributed in the population of busses
I normally distributed with mean RC and variance σ2

RC .
I Linear cost function C (x) = cx

I Parameters: c and RC , are set roughly equal to the ML estimates
from one of the linear specifications of Rust (1987). 1

I Sample sizes of N = 100, T = 250
I I draw 5000 Monte Carlo samples, and for each of them, I obtain

partial ML estimates for models estimated with and without
unobserved heterogeneity.

73 / 76

Random vs Fixed Coefficients

TABLE 5
MONTE CARLO EXPERIMENT

FIXED AND RANDOM COEFFICIENTS

Statistic σRC
dgp RC c µRC σRC c

Mean Bias 0 0.05 0.01 0.19 0.41 0.03
1 -0.52 -0.07 0.05 -0.02 0.01
2 -1.96 -0.28 0.10 0.08 0.01

Mean Absolute Error 0 0.35 0.06 0.43 0.41 0.07
1 0.57 0.08 0.43 0.29 0.06
2 1.96 0.28 0.46 0.30 0.07

Monte Carlo 0 0.44 0.074 0.51 0.38 0.082
std. dev 1 0.42 0.066 0.54 0.37 0.080

2 0.51 0.075 0.57 0.38 0.084

Mean std. Error 0 0.45 0.073 0.46 0.13 0.071
1 0.41 0.068 0.52 0.08 0.079
2 0.28 0.053 0.56 0.06 0.080

σRC
dgp

Mean Bias 0 -0.7%
1 0.2%
2 0.2%

-0.3%
2.4%

12.1%

Monte Carlo Distribution of ML and MSL estimates
Random Coefficients

RC/c µRC/c

Bias in estimated coefficients ratios

Fixed Coefficients

Note: The Monte Carlo experiment is based on 1000 Monte Carlo samples of sample size N=100,

T=250. The model was solved using 5th order Chebyshev polynomials in each dimension of the state
space. In the random coefficients model, two continuous variables were approximated (the observed state
variable, x, and unobserved heterogeneity in RC). To evaluate integrals in the expected value function, I
used R=50 Halton draws. The number of simulations for each bus were set to S=100. The bias in the
ratio RC/c and µRC/c is measured as the percentage discrepancy to the true value.

74 / 76

Random vs Fixed Coefficients
FIGURE 2: MONTE CARLO DISTRIBUTION OF ML ESTIMATES

FIXED AND RANDOM COEFFICIENTS

Note: See the note in Table 5 for a description of the experimental design.

75 / 76

Main Results

1. We derive additional biases and variances in approx. MLE due to
approx. solution and simulations.

2. These provide guidelines for how approximate solutions and
#simulations should be implemented for good performance of
approx. MLE.

3. They also allow us to adjust standard errors of approx. MLE to take
into account approximation bias and simulation variance.

4. ... And potentially bias-adjust the approx. MLE.
5. As a specific solver, we consider a sieve approximator (aka linear

approximator) of the model solution. We analyze its properties
which in turn allow us to show how this affects the MLE.

6. Simulations illustrate the theoretical results in finite
samples/simulations.

76 / 76

	Introduction
	Harold Zurcher
	The Nested Fixed Point Algorithm
	MPEC

	Death to NFXP?
	Death to NFXP?
	NFXP survival kit?
	STEP 1: NFXP Pocket guide
	STEP 2: Solve for fixed point using Newton Iterations
	STEP 3: Recenter to ensure numerical stability
	STEP 4: Provide analytical gradients of Bellman operator
	Step 5: Provide analytical gradients of likelihood
	STEP 6: BHHH
	NFXP vs. MPEC revisited
	Conclusion

	Sieves
	The General Problem
	Empirical Implementation
	Approximation of Value Function
	Approximation of Likelihood Function
	Simulated MLE
	Experimental Design
	Conclusion on Part II

